scholarly journals Photovoltaic Solar Energy: Is It Applicable in Brazil? – A Review Applied to Brazilian Case

2019 ◽  
Vol 66 (2) ◽  
pp. 99-120
Author(s):  
Wilmer Emilio García Moreno ◽  
Andressa Ullmann Duarte ◽  
Litiéle dos Santos ◽  
Rogério Vescia Lourega

AbstractThe photovoltaic technologies have been developed year by year in different countries; however, there are some countries where this kind of energy is being born, such as the Brazilian case. In this paper, some important parameters are analysed and applied to different solar cell materials, identifying that if the fossil fuels were substituted by solar cells, it would reduce the CO2 emissions by 93.2%. In addition, it is shown that the efficiency of solar cells is not as farther as it could be thought from coal thermoelectrical plants in Brazil and the cost of energy using solar cells could be as good as these thermoelectrical plants. Finally, the potentiality of Brazilian territory to implant this technology is presented, identifying that with the use of 0.2% of the territory, the energy demand could be supplied.

2021 ◽  
Author(s):  
Hervé Tchognia Nkuissi ◽  
Amina Labiod ◽  
Stéphanie Ferry ◽  
Patrick Lévêque ◽  
Thomas Heiser

<p>Nowadays, climate change is a reality because energy demand is mostly satisfied by fossil fuels which are limited resources and also responsible for greenhouse gas emissions. Actions have to be undertaken to overcome this issue. Among the solutions proposed to this is the development and use of new energy sources called renewable energies. By renewable energy, we understand energies coming from the sun, wind, geothermal, water, or biomass. Of these, solar energy is one of the most abundant, clean, effective, and easily deployed. One of the efficient ways to exploit solar energy is photovoltaics.</p><p>Two decades of research have allowed organic photovoltaics to appear today as an alternative to their conventional and inorganic counterparts. However, several issues have to be addressed in order to ease their production on an industrial level. Bulk heterojunction (BHJ) solar cells based on the blend of two types of conjugated molecules acting as an electron donor (hole transport) and an electron acceptor (electron transport) are the most efficient organic solar cells. Further, using non-fullerene acceptors (or NFA) in these BHJ solar cells have recently gained a broad interest due to their great potential to realize high conversion efficiencies (more than 18%) with a long lifetime over the conventional polymer/fullerene blend solar cells.</p><p>Here we provide an overview of the recent progress of different existing and growing photovoltaic technologies. We also provide prospects for the future development of organic photovoltaic devices.</p>


2015 ◽  
Vol 1116 ◽  
pp. 51-58 ◽  
Author(s):  
Mohammad Kamal Hossain

In recent decades, due to some urgent and unavoidable issues, such as increasing energy demand, climate change, global warming, etc., the R&D of renewable energies have become inevitable to pave way the sustainable development of human society. In this regard, solar power is widely considered as the most appealing clean energy since there is no other one being as abundant as the sun. The amount of solar energy reaching our earth within one hour equals to the total annual energy need of all of humankind. Since the energy resources on Earth are being exhausted, solar energy have to serve as the main energy source in coming century and beyond. The photovoltaic solar cells developed so far have been based on silicon wafers, with this dominance likely to continue well into the future. The surge in manufacturing volume as well as emerging technologies over the last decade has resulted in greatly decreased costs. Therefore, several companies are now well below the USD 1 W−1 module manufacturing cost benchmark that was once regarded as the lowest possible with this technology. Thin-film silicon, such as hydrogenated amorphous silicon (a-Si), microcrystalline silicon (mc-Si) and related alloys, are promising materials for very low-cost solar cells. Here in this article, a brief description of thin film solar cell technologies followed by deferent state-of-art tools used for characterizing such solar cells are explored. Since characteristics of thin-film solar cells are the main ingredient in defining efficiency, the inherent properties are also mentioned alongside the characterizations.


Crystals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 87 ◽  
Author(s):  
Yunyan Zhang ◽  
Huiyun Liu

Solar energy is abundant, clean, and renewable, making it an ideal energy source. Solar cells are a good option to harvest this energy. However, it is difficult to balance the cost and efficiency of traditional thin-film solar cells, whereas nanowires (NW) are far superior in making high-efficiency low-cost solar cells. Therefore, the NW solar cell has attracted great attention in recent years and is developing rapidly. Here, we review the great advantages, recent breakthroughs, novel designs, and remaining challenges of NW solar cells. Special attention is given to (but not limited to) the popular semiconductor NWs for solar cells, in particular, Si, GaAs(P), and InP.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Khuram Shahzad Ahmad ◽  
Syeda Naima Naqvi ◽  
Shaan Bibi Jaffri

AbstractRapid escalation in energy demand and pressure over finite fossil fuels reserves with augmenting urbanization and industrialization points towards adoption of cleaner, sustainable and eco-friendly sources to be employed. Solar cell devices known for efficient conversion of solar energy to electrical energy have been attracting scientific community due to their remarkable conformity with the principles of green chemistry. The future candidacy of solar cells is expressed by their efficient conversion. Such a great potential associated with solar cells has instigated research since many decades leading to the emergence of a wide myriad of solar cells devices with novel constituent materials, designs and architecture reflected in form of three generations of the solar cells. Considering the cleaner and sustainability aspects of the solar energy, current review has systematically compiled different generations of solar cells signifying the advancements in terms of architecture and compositional parameters. In addition to the chronological progression of solar cells, current review has also focused on the innovations done in improvement of solar cells. In terms of efficiency and stability, photovoltaic community is eager to achieve augmented efficiencies and stabilities for using solar cells as an alternative to the conventional fossil fuels.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4018
Author(s):  
Guglielmina Mutani ◽  
Valeria Todeschi

It is common practice, in the production of photovoltaic energy to only use the south-exposed roof surface of a building, in order to achieve the maximum production of solar energy while lowering the costs of the energy and the solar technologies. However, using the south-exposed surface of a roof only allows a small quota of the energy demand to be covered. Roof surfaces oriented in other directions could also be used to better cover the energy load profile. The aim of this work is to investigate the benefits, in terms of costs, self-sufficiency and self-consumption, of roof integrated photovoltaic technologies on residential buildings with different orientations. A cost-optimal analysis has been carried out taking into account the economic incentives for a collective self-consumer configuration. It has emerged, from this analysis, that the better the orientation is, the higher the energy security and the lower the energy costs and those for the installation of photovoltaic technologies. In general, the use of south-facing and north-facing roof surfaces for solar energy production has both economic and energy benefits. The self-sufficiency index can on average be increased by 8.5% through the use of photovoltaic installations in two directions on gable roofs, and the maximum level that can be achieved was on average 41.8, 41.5 and 35.7% for small, medium and large condominiums, respectively. Therefore, it could be convenient to exploit all the potential orientations of photovoltaic panels in cities to improve energy security and to provide significant economic benefits for the residential users.


2019 ◽  
Vol 2 (3) ◽  
pp. 85-89
Author(s):  
Ali Basrah Pulungan ◽  
Asnil Asnil ◽  
Rahmat Hidayat ◽  
Juli Sardi ◽  
Syaiful Islami

This article aim to be able to take advantage of an electric motor as a net puller on a fishing boat using solar energy. The use of human labor as a net puller requires a large amount of energy and needs a break to be able to do more withdrawal activities, so the number of withdrawals that can be done is very limited. Pantai Jaya fishing groups as partners are among the 20 active fishing groups in the Pasie Nan Tigo sub-district of Koto Tangah subdistrict of Padang City who experience these problems. The problem of this partner can be given a solution in the form of the use of an electric motor as a towing net on a fishing boat. In order not to cause problems in terms of electricity supply, solar energy can be used by using solar cells, so there is no addition of fuel oil. The implementation method given is direct installation and provision of extension materials on the use of solar cell technology and the introduction of components and hand tools. This activity was carried out for two days which included preparation, installation and training, followed by a group of fishermen. The fishing group received a set of solar cells, electric motors, batteries and other accessories and installed them. Based on tests that have been carried out in sunny weather conditions at 300C, a load of 50 kg with a rated voltage at that time 12.4V, motor speed 2.7m / min, 2.4A. Based on the results of these tests indicate that the solar cell system has worked according to the parameters it should. Therefore, it can be said that this activity has been carried out properly and the solar cell system is functioning properly. Participants hope for these activities to be carried out for the following year, because there are still a number of fishing boat groups that are in dire need.


2014 ◽  
pp. 319-346
Author(s):  
Salahuddin Qazi ◽  
Farhan A. Qazi

Solar radiation is plentiful and a clean source of power. However, despite the first practical use of silicon based solar cell more than 50 years ago, it has not been exploited to its full potential due to the high cost of electrical conversion on a per Watt basis. Many new kinds of photovoltaic cells such as multi-junction solar cells dye –sensitized solar cells and organic solar cell incorporating element of nanotechnology have been proposed to increase the efficiency and reduce the cost. Nanotechnology, in the form of quantum dots, nanorods, nanotubes, and grapheme, has been shown to enhance absorption of sunlight, makes low cost flexible solar panels and increases the efficiency of photovoltaic cells. The chapter reviews the state of current photovoltaic cells and challenges it presents. It also discusses the use of nanotechnology in the application of photovoltaic cells and future research directions to improve the efficiency of solar cells and reduce the cost.


Author(s):  
Salahuddin Qazi ◽  
Farhan A. Qazi

Solar radiation is plentiful and a clean source of power. However, despite the first practical use of silicon based solar cell more than 50 years ago, it has not been exploited to its full potential due to the high cost of electrical conversion on a per Watt basis. Many new kinds of photovoltaic cells such as multi-junction solar cells dye –sensitized solar cells and organic solar cell incorporating element of nanotechnology have been proposed to increase the efficiency and reduce the cost. Nanotechnology, in the form of quantum dots, nanorods, nanotubes, and grapheme, has been shown to enhance absorption of sunlight, makes low cost flexible solar panels and increases the efficiency of photovoltaic cells. The chapter reviews the state of current photovoltaic cells and challenges it presents. It also discusses the use of nanotechnology in the application of photovoltaic cells and future research directions to improve the efficiency of solar cells and reduce the cost.


Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 667 ◽  
Author(s):  
Avraam Roussos ◽  
Nikiforos Misailidis ◽  
Alexandros Koulouris ◽  
Francesco Zimbardi ◽  
Demetri Petrides

Renewable liquid biofuels for transportation have recently attracted enormous global attention due to their potential to provide a sustainable alternative to fossil fuels. In recent years, the attention has shifted from first-generation bioethanol to the production of higher molecular weight alcohols, such as biobutanol, from cellulosic feedstocks. The economic feasibility of such processes depends on several parameters such as the cost of raw materials, the fermentation performance and the energy demand for the pretreatment of biomass and downstream processing. In this work, two conceptual process scenarios for isobutanol production, one with and one without integrated product removal from the fermentor by vacuum stripping, were developed and evaluated using SuperPro Designer®. In agreement with previous publications, it was concluded that the fermentation titer is a crucial parameter for the economic competitiveness of the process as it is closely related to the energy requirements for product purification. In the first scenario where the product titer was 22 g/L, the energy demand for downstream processing was 15.8 MJ/L isobutanol and the unit production cost of isobutanol was $2.24/L. The integrated product removal by vacuum stripping implemented in the second scenario was assumed to improve the isobutanol titer to 50 g/L. In this case, the energy demand for the product removal (electricity) and downstream processing were 1.8 MJ/L isobutanol and 10 MJ/L isobutanol, respectively, and the unit production cost was reduced to $1.42/L. The uncertainty associated with the choice of modeling and economic parameters was investigated by Monte Carlo simulation sensitivity analysis.


2015 ◽  
Vol 730 ◽  
pp. 173-177
Author(s):  
Yu Wen Tang

Solar energy is an inexhaustible and renewable energy without environmental pollution. Solar energy can be used in three kinds of forms: solar thermal energy, photochemical conversion and photovoltaic power generation. Among these, the final form of photovoltaic power generation is electricity which can be transported, applied and stored conveniently. On the basis of photovoltaic effect, solar cell is developed as a new technology to convert light energy into electrical energy using semiconductor. Up to now the two key problems of the development of solar cells are how to improve the conversion efficiency and reduce cost. Therefore, the material and production technology used for solar cells are discussed based on improving conversion efficiency in this article.


Sign in / Sign up

Export Citation Format

Share Document