scholarly journals 3D Digitization and Additive Manufacturing Technologies in Medicine

Author(s):  
Ivan Molnár ◽  
Ladislav Morovič

Abstract The paper discusses the use of 3D digitization and additive manufacturing technologies in the field of medicine. In addition, applications of the use of 3D digitization and additive manufacturing methods are described, focusing on the design and manufacture of individual medical aids. Subsequently, the process of designing and manufacturing of orthopedic aids using these technologies is described and the advantages of introducing the given technologies into the design and manufacturing processes in the medicine sector are presented.

Author(s):  
Christopher T. Richard ◽  
Tsz-Ho Kwok

Abstract With the emergence of new metal AM (additive manufacturing) methods, rapid IC (investment casting), a variation of conventional investment casting has been a popular topic of research in the fields of: aerospace, dentistry and biomedical engineering. RIC (Rapid investment casting) takes advantage of the additive nature of 3D printing for pattern making which allows for more complex castings than traditional investment casting. RIC is a manufacturing process that combines the casting knowledge accumulated over five thousand years with relatively novel AM knowledge. The result is a process that can compete with newer metal AM methods with the added benefits of excellent surface finish, fatigue strength and the ability to create parts from almost any metal or metal alloy. This article will focus on research advancements in investment casting, AM and all the topics that are closely related to optimizing these two processes. Beyond that, aerospace, dentistry and biomedical engineering advancements using investment casting will be reviewed.


Author(s):  
Matthew N. Rush ◽  
Christina Salas ◽  
Lorraine Mottishaw ◽  
Damian Fountain ◽  
Deana Mercer

Abstract Background Ligament reconstruction, as a surgical method used to stabilize joints, requires significant strength and tissue anchoring to restore function. Historically, reconstructive materials have been fraught with problems from an inability to withstand normal physiological loads to difficulties in fabricating the complex organization structure of native tissue at the ligament-to-bone interface. In combination, these factors have prevented the successful realization of nonautograft reconstruction. Methods A review of recent improvements in additive manufacturing techniques and biomaterials highlight possible options for ligament replacement. Description of Technique In combination, three dimensional-printing and electrospinning have begun to provide for nonautograft options that can meet the physiological load and architectures of native tissues; however, a combination of manufacturing methods is needed to allow for bone-ligament enthesis. Hybrid biofabrication of bone-ligament tissue scaffolds, through the simultaneous deposition of disparate materials, offer significant advantages over fused manufacturing methods which lack efficient integration between bone and ligament materials. Results In this review, we discuss the important chemical and biological properties of ligament enthesis and describe recent advancements in additive manufacturing to meet mechanical and biological requirements for a successful bone–ligament–bone interface. Conclusions With continued advancement of additive manufacturing technologies and improved biomaterial properties, tissue engineered bone-ligament scaffolds may soon enter the clinical realm.


Author(s):  
Jorge G. Cham ◽  
Beth L. Pruitt ◽  
Mark R. Cutkosky ◽  
Mike Binnard ◽  
Lee E. Weiss ◽  
...  

Abstract This paper addresses the design and manufacturing of products with embedded components through layered manufacturing processes such as Shape Deposition Manufacturing (SDM). Embedding components allows the creation of novel designs such as “smart” products and integrated assemblies of sensors, actuators and other mechanical components. We present prototypes to illustrate the possibilities for such devices and we address the issues that constrain their process planning. Next, we present a combination of process planning algorithms and manufacturing methods that we have developed to support the design of layered products with embedded components.


Author(s):  
Alok Sutradhar ◽  
Jaejong Park ◽  
Payam Haghighi ◽  
Jacob Kresslein ◽  
Duane Detwiler ◽  
...  

Topology optimization provides optimized solutions with complex geometries which are often not suitable for direct manufacturing without further steps or post-processing by the designer. There has been a recent progression towards linking topology optimization with additive manufacturing, which is less restrictive than traditional manufacturing methods, but the technology is still in its infancy being costly, time-consuming, and energy inefficient. For applications in automotive or aerospace industries, the traditional manufacturing processes are still preferred and utilized to a far greater extent. Adding manufacturing constraints within the topology optimization framework eliminates the additional design steps of interpreting the topology optimization result and converting it to viable manufacturable parts. Furthermore, unintended but inevitable deviations that occur during manual conversion from the topology optimized result can be avoided. In this paper, we review recent advances to integrate (traditional) manufacturing constraints in the topology optimization process. The focus is on the methods that can create manufacturable and well-defined geometries. The survey will discuss the advantages, limitations, and related challenges of manufacturability in topology optimization.


Author(s):  
Suyambazhahan Sivalingam ◽  
Sunny Narayan ◽  
Sakthivel Rajamohan ◽  
Ivan Grujic ◽  
Nadica Stojanovic

The additive manufacturing (AM) of products involves various processes, such as raising the temperature of a work-piece (part) and substrate to the melting point and subsequent solidification, using a movable source of heat. The work piece is subjected to repeated cycles of heating and cooling. The main objective of this work was to present an overview of the various methods used for prediction of the residual stresses and how their contributions can be used to improve current additive manufacturing methods. These novel methods of manufacturing have several merits, compared to conventional methods. Some of these merits include the lower costs, higher precision and accuracy of manufacturing, faster processing time and more eco-friendly approaches to processes involved.


2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Seymur Hasanov ◽  
Suhas Alkunte ◽  
Mithila Rajeshirke ◽  
Ankit Gupta ◽  
Orkhan Huseynov ◽  
...  

Additive manufacturing has already been established as a highly versatile manufacturing technique with demonstrated potential to completely transform conventional manufacturing in the future. The objective of this paper is to review the latest progress and challenges associated with the fabrication of multi-material parts using additive manufacturing technologies. Various manufacturing processes and materials used to produce functional components were investigated and summarized. The latest applications of multi-material additive manufacturing (MMAM) in the automotive, aerospace, biomedical and dentistry fields were demonstrated. An investigation on the current challenges was also carried out to predict the future direction of MMAM processes. It was concluded that further research and development is needed in the design of multi-material interfaces, manufacturing processes and the material compatibility of MMAM parts.


2020 ◽  
Vol 110 (11-12) ◽  
pp. 784-786
Author(s):  
Stefan Kunz ◽  
Antonia Winkler

Die steigende Komplexität von Produkten und Fertigungsprozessen fordert von den Fertigungsverfahren gesteigerte Präzision und Geometrievielfalt, eine hohe Reproduktionsfähigkeit sowie kürzere Prozesszeiten. Gleichzeitig steigen der Anteil der Automatisierung und der Trend zur Miniaturisierung. Auch für die Mikrostrukturierung gilt es wirtschaftliche Fertigungsverfahren einzusetzen. Ebenso spielen Kosten- und Ressourceneffizienz in diesem Zusammenhang eine wichtige Rolle. Funkenerosion, ein seit vielen Jahren etabliertes Strukturierungsverfahren, eignet sich aufgrund von einigen Technologievorteilen hervorragend zur Mikrostrukturierung von Bauteilen, gehört jedoch wegen der niedrigen Abtragsrate im Vergleich zu anderen Fertigungstechnologien zu den eher langsamen Verfahren. The increasing complexity of products and manufacturing processes demands increased precision and geometric diversity, high reproducibility and shorter process times from manufacturing methods. At the same time, the proportion of automation and the trend towards miniaturization are increasing. Economical manufacturing methods need to be used for microstructuring as well. Cost and resource efficiency also play an important role in this context. Electro discharge machining (EDM), a structuring process that has been established for many years, is excellently suited for microstructuring components due to a number of technological advantages, but is one of the rather slow processes due to its low removal rate compared to other manufacturing technologies.


2021 ◽  
Vol 263 (4) ◽  
pp. 2699-2707
Author(s):  
Umberto Iemma

The project AERIALIST (AdvancEd aicRaft-noIse-AlLeviation devIceS using meTamaterials), funded within the Breakthrough Innovation topic of the H2020 program, has closed its activity on May 2020. The objective of the project was the disclosure of the potential of metamaterials in developing disruptive devices for the mitigation of aircraft noise, in order to contribute to the identification of the breakthrough technologies targeted at the achievement of the noise reduction targets foreseen by the ACARE Flightpath 2050. Although targeted to low TRL, AERIALIST has been focused on the development of an integrated toolchain capable to address the entire design loop, from the early conception to the numerical and experimental proof of concept, up to the final design and manufacturing. The toolchain was founded onto four pillars: i) the extension of the acoustic metamaterial theory to aeroacoustics; ii) the exploitation of the latest additive manufacturing technologies; iii) the wind-tunnel assessment of the selected concepts; iv) the identification of a development roadmap towards higher TRL. After three years of activity, the project has attained all its objectives. The present paper is a review of the main outcomes of the project, their application potential and relevance to the ACARE objectives.


Author(s):  
Nils Stelzer ◽  
Torsten Sebald ◽  
Markus Hatzenbichler ◽  
Benoit Bonvoisin ◽  
Baca Lubos ◽  
...  

The potential of the Additive Manufacturing technologies is impeded by the surface finish obtained on the as-manufactured material. Therefore, the influence of various surface treatments, commonly applied to space hardware, on the mechanical properties of three selected metallic alloys (SS316L, AlSi10Mg, Ti6Al4V) prepared by using Selective Laser Melting (SLM) and Electron Beam Melting (EBM) additive manufacturing processes have been investigated. Within this study, SLM using EOS M400 and EOS M280 equipment and in addition EBM using an ARCAM Q20 machine have been applied for sample manufacturing. A half-automated shot-peening process followed by a chemical and/or electrochemical polishing or Hirtisation® process has been applied in order to obtain lower surface roughness compared to their as-received states. Special emphasize has been taken on their tensile, fatigue, and fracture toughness properties. In addition, their stress corrosion cracking (SCC) behaviour including microstructural analysis using HR-SEM have been investigated.


Sign in / Sign up

Export Citation Format

Share Document