scholarly journals Properties of Surface Engineered Metallic Parts Prepared by Additive Manufacturing

Author(s):  
Nils Stelzer ◽  
Torsten Sebald ◽  
Markus Hatzenbichler ◽  
Benoit Bonvoisin ◽  
Baca Lubos ◽  
...  

The potential of the Additive Manufacturing technologies is impeded by the surface finish obtained on the as-manufactured material. Therefore, the influence of various surface treatments, commonly applied to space hardware, on the mechanical properties of three selected metallic alloys (SS316L, AlSi10Mg, Ti6Al4V) prepared by using Selective Laser Melting (SLM) and Electron Beam Melting (EBM) additive manufacturing processes have been investigated. Within this study, SLM using EOS M400 and EOS M280 equipment and in addition EBM using an ARCAM Q20 machine have been applied for sample manufacturing. A half-automated shot-peening process followed by a chemical and/or electrochemical polishing or Hirtisation® process has been applied in order to obtain lower surface roughness compared to their as-received states. Special emphasize has been taken on their tensile, fatigue, and fracture toughness properties. In addition, their stress corrosion cracking (SCC) behaviour including microstructural analysis using HR-SEM have been investigated.

2021 ◽  
Vol 58 (1) ◽  
pp. 4-31
Author(s):  
C. Fleißner-Rieger ◽  
T. Pogrielz ◽  
D. Obersteiner ◽  
T. Pfeifer ◽  
H. Clemens ◽  
...  

Abstract Additive manufacturing processes allow the production of geometrically complex lightweight structures with specific material properties. However, by contrast with ingot metallurgy methods, the manufacture of components using this process also brings about some challenges. In the field of microstructural characterization, where mostly very fine structures are analyzed, it is thus indispensable to optimize the classic sample preparation process and to furthermore implement additional preparation steps. This work focuses on the metallography of additively manufactured Ti‑6Al‑4V components produced in a selective laser melting process. It offers a guideline for the metallographic preparation along the process chain of additive manufacturing from the metal powder characterization to the macro- and microstructural analysis of the laser melted sample. Apart from developing preparation parameters, selected etching methods were examined with regard to their practicality.


Author(s):  
Ivan Molnár ◽  
Ladislav Morovič

Abstract The paper discusses the use of 3D digitization and additive manufacturing technologies in the field of medicine. In addition, applications of the use of 3D digitization and additive manufacturing methods are described, focusing on the design and manufacture of individual medical aids. Subsequently, the process of designing and manufacturing of orthopedic aids using these technologies is described and the advantages of introducing the given technologies into the design and manufacturing processes in the medicine sector are presented.


2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Seymur Hasanov ◽  
Suhas Alkunte ◽  
Mithila Rajeshirke ◽  
Ankit Gupta ◽  
Orkhan Huseynov ◽  
...  

Additive manufacturing has already been established as a highly versatile manufacturing technique with demonstrated potential to completely transform conventional manufacturing in the future. The objective of this paper is to review the latest progress and challenges associated with the fabrication of multi-material parts using additive manufacturing technologies. Various manufacturing processes and materials used to produce functional components were investigated and summarized. The latest applications of multi-material additive manufacturing (MMAM) in the automotive, aerospace, biomedical and dentistry fields were demonstrated. An investigation on the current challenges was also carried out to predict the future direction of MMAM processes. It was concluded that further research and development is needed in the design of multi-material interfaces, manufacturing processes and the material compatibility of MMAM parts.


Metals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1006 ◽  
Author(s):  
Óscar Teixeira ◽  
Francisco J. G. Silva ◽  
Luís P. Ferreira ◽  
Eleonora Atzeni

Additive manufacturing (AM) can be seen as a disruptive process that builds complex components layer upon layer. Two of its distinct technologies are Selective Laser Melting (SLM) and Electron Beam Melting (EBM), which are powder bed fusion processes that create metallic parts with the aid of a beam source. One of the most studied and manufactured superalloys in metal AM is the Ti–6Al–4V, which can be applied in the aerospace field due to its low density and high melting point, and in the biomedical area owing to its high corrosion resistance and excellent biocompatibility when in contact with tissues or bones of the human body. The research novelty of this work is the aggregation of all kinds of data from the last 20 years of investigation about Ti–6Al–4V parts manufactured via SLM and EBM, namely information related to residual stresses (RS), as well as the influence played by different heat treatments in reducing porosity and increasing mechanical properties. Throughout the report, it can be seen that the expected microstructure of the Ti–6Al–4V alloy is different in both manufacturing processes, mainly due to the distinct cooling rates. However, heat treatments can modify the microstructure, reduce RS, and increase the ductility, fatigue life, and hardness of the components. Furthermore, distinct post-treatments can induce compressive RS on the part’s surface, consequently enhancing the fatigue life.


Author(s):  
John D. Martin

A number of additive manufacturing processes were analyzed and compared in regards to the direct 3D printing of copper induction coils. The purpose of this study was to narrow in on 3D printing technologies that would best be suited for the manufacture of copper inductions coils. The main focus of the study was to look at how all the available additive processes could specifically be successful at creating parts made of copper pure enough to effectively conduct electricity and also geometries complex enough to meet the demands of various induction coil designs. The results of this study led to three main categories of additive manufacturing that were deemed good choices for producing copper induction coils, these included: powder bed fusion, sheet lamination, and directed energy deposition. Specific processes identified within these categories were powder bed fusion using electron beam melting and laser melting; ultrasonic additive manufacturing; and directed energy deposition utilizing laser melting and electron beam melting using both wire and powder material delivery systems. Also discussed was additional benefits that using 3D printing technology could provide beyond the physical manufacturing portion by opening doors for coupling with computer aided drafting (CAD) and computer aided engineering (CAE) software in order to create a seamless design-to-production process.


Inventions ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 44 ◽  
Author(s):  
Mahdi Mohammadizadeh ◽  
Hao Lu ◽  
Ismail Fidan ◽  
Khalid Tantawi ◽  
Ankit Gupta ◽  
...  

Metal additive manufacturing (AM) has gained much attention in recent years due to its advantages including geometric freedom and design complexity, appropriate for a wide range of potential industrial applications. However, conventional metal AM methods have high-cost barriers due to the initial cost of the capital equipment, support, and maintenance, etc. This study presents a low-cost metal material extrusion technology as a prospective alternative to the production of metallic parts in additive manufacturing. The filaments used consist of copper, bronze, stainless steel, high carbon iron, and aluminum powders in a polylactic acid matrix. Using the proposed fabrication technology, test specimens were built by extruding metal/polymer composite filaments, which were then sintered in an open-air furnace to produce solid metallic parts. In this research, the mechanical and thermal properties of the built parts are examined using tensile tests, thermogravimetric, thermomechanical and microstructural analysis.


Author(s):  
Lijue Xue ◽  
Yangsheng Li ◽  
Jianyin Chen ◽  
Shaodong Wang

Laser consolidation (LC) is a novel additive manufacturing process being developed by the National Research Council Canada (NRC) at its London facility. LC offers unique capabilities in the production of net-shape functional metallic parts requiring no further post-machining. NRC’s LC technology has achieved dimensional accuracy of up to +/−0.05 mm with a surface finish up to 1 μm Ra (depending on the materials used in the manufacturing process). The LC process differs from other additive manufacturing technologies by its high precision deposition system that can build functional parts or features on top of existing parts using various high performance materials and alloys. In this paper, laser consolidation of various high performance materials (such as Ni-base super alloys and Ti-6Al-4V alloy) will be discussed and the examples will be given on building complex functional components and repairing parts otherwise unrepairable for gas turbine and other applications.


Author(s):  
Seymur Hasanov ◽  
Suhas Alkunte ◽  
Mithila Rajeshirke ◽  
Ankit Gupta ◽  
Orkhan Huseynov ◽  
...  

Additive manufacturing has already been established as a highly versatile manufacturing technique with demonstrated potential to completely transform conventional manufacturing in the future. The objective of this paper is to review the latest progress and challenges associated with the fabrication of multi-material parts using additive manufacturing technologies. Various manufacturing processes and materials used to produce functional components were investigated and summarized. The latest applications of multi-material additive manufacturing (MMAM) in automotive, aerospace, biomedical and dentistry field were demonstrated. Investigation on the current challenges were also carried out to predict the future direction of MMAM processes. It is concluded that the further research and development needed in the design of multi-material interfaces, manufacturing processes and material compatibility of MMAM parts are necessary.


2021 ◽  
Vol 1016 ◽  
pp. 755-761
Author(s):  
Andrey Koptyug ◽  
Carlos Botero ◽  
William Sjöström ◽  
Mikael Bäckström ◽  
Lars Erik Rännar ◽  
...  

Electron beam melting (EBM) is one of the constantly developing powder bed fusion (PBF) additive manufacturing technologies (AM) offering advanced control over the manufacturing process. Development of the additive manufacturing today is targeting both widening of the available materials classes, and introducing new manufacturing modalities. Present research is related to the new possibilities in tailoring different properties within additively manufactured components effectively adding “fourth dimension to the 3D-printing”. Through manipulating beam energy deposition (scanning strategy) it is possible to tailor quite different material properties selectively within each manufactured component, including crystalline and amorphous state, effective material density, as well as mechanical, thermal, electrical and acoustic properties. With the blends of precursor powder, it is also possible to acquire by choice both metal-metal composite and completely alloyed material. Specific examples are given in relation to the EBM, but majority of the conclusions are valid for the other PBF techniques as well.


Sign in / Sign up

Export Citation Format

Share Document