Finite-size scaling and power law relations for dipole-quadrupole interaction on Blume-Emery-Griffiths model

Open Physics ◽  
2011 ◽  
Vol 9 (3) ◽  
Author(s):  
Aycan Özkan ◽  
Bülent Kutlu

AbstractThe Blume-Emery-Griffiths model with the dipole-quadrupole interaction ($$ \ell = \frac{I} {J} $$) has been simulated using a cellular automaton algorithm improved from the Creutz cellular automaton (CCA) on the face centered cubic (fcc) lattice. The finite-size scaling relations and the power laws of the order parameter (M) and the susceptibility (χ) are proposed for the dipole-quadrupole interaction (ℓ). The dipole-quadrupole critical exponent δχ has been estimated from the data of the order parameter (M) and the susceptibility (χ). The simulations have been done in the interval $$ 0 \leqslant \ell = \frac{I} {J}0 \leqslant 0.01 $$ for $$ d = \frac{D} {J} = 0,k = \frac{K} {J} = 0 $$ and $$ h = \frac{H} {J} = 0 $$ parameter values on a face centered cubic (fcc) lattice with periodic boundary conditions. The results indicate that the effect of the ℓ parameter is similar to the external magnetic field (h). The critical exponent δℓ are in good agreement with the universal value (δh = 5) of the external magnetic field.

2015 ◽  
Vol 799-800 ◽  
pp. 120-124 ◽  
Author(s):  
Mary Donnabelle L. Balela ◽  
Lalaine M. Dulin ◽  
Erica A. Garcia ◽  
M. Janelle H. Tica

Cobalt-nickel (Co-Ni) nanowires were formed by electroless deposition in ethylene glycol under external magnetic field. The effects of initial Co (II) and Ni (II) concentration on the surface and morphology of the synthesized nanowires were investigated by x-ray diffraction (XRD) and scanning electron microscope (SEM) respectively. An increase in the Co (II) concentration resulted in increase in diameter of the nanowires. However, the length of nanowires was observed to decrease. Higher Co (II) concentration resulted in a mixture of hexagonal close-packed and face-centered cubic Co-Ni nanowires. X-ray diffraction revealed that crystal growth occurred when the nanowires are annealed at 653 K for 10h.


2011 ◽  
Vol 25 (09) ◽  
pp. 1211-1224
Author(s):  
A. ÖZKAN ◽  
B. KUTLU

The spin-1 Ising model with the dipole–quadrupole interaction (ℓ = L/J) has been simulated using a cellular automaton (CA) algorithm improved from the Creutz cellular automaton (CCA) for a face-centered cubic (fcc) lattice. The simulations have been made for different ℓ values at the reentrant phase transition and the special points such as the tricritical point (k = K/J = 0, d = D/J = 5.7) and the critical end point (k = -0.9, d = 0.7). The simulation results show that the model has the dense ferromagnetic (df, df(+), df(-)) and the ferromagnetic (F, F(+), F(-)) phases with the dipole–quadrupole interaction. The type and the order of the phase transitions change for the nonzero values of ℓ on the special points. Furthermore, the effect of ℓ is similar with the effect of the external magnetic field (h).


2017 ◽  
Vol 31 (11) ◽  
pp. 1750073 ◽  
Author(s):  
Dorílson S. Cambui ◽  
Tarras Iliass

In this paper, we used a self-propelled particle model to study the transition between phases of collective behavior observed in animal aggregates. In these systems, transitions occur when individuals shift from one collective state to another. We investigated transitions induced by both the speed and the noise. Statistical quantities that characterize the phase transition driven by noise, such as order parameter, the Binder cumulant and the susceptibility were analyzed, and we used the finite-size scaling theory to estimate the critical exponent ratios [Formula: see text] and [Formula: see text].


2000 ◽  
Vol 11 (03) ◽  
pp. 561-572 ◽  
Author(s):  
B. KUTLU ◽  
M. KASAP ◽  
S. TURAN

The two-dimensional Ising model in a small external magnetic field, is simulated on the Creutz cellular automaton. The values of the static critical exponents for 0.0025 ≤ h ≤ 0.025 are estimated within the framework of the finite size scaling theory. The value of the field critical exponent is in a good agreement with its theoretical value of δ = 15. The results for 0.0025 ≤ h ≤ 0.025 are compatible with Ising critical behavior for T < Tc.


2021 ◽  
Vol 7 (3) ◽  
pp. 38
Author(s):  
Roshni Yadav ◽  
Chun-Hsien Wu ◽  
I-Fen Huang ◽  
Xu Li ◽  
Te-Ho Wu ◽  
...  

In this study, [Co/Ni]2/PtMn thin films with different PtMn thicknesses (2.7 to 32.4 nm) were prepared on Si/SiO2 substrates. The post-deposition perpendicular magnetic field annealing (MFA) processes were carried out to modify the structures and magnetic properties. The MFA process also induced strong interlayer diffusion, rendering a less sharp interface between Co and Ni and PtMn layers. The transmission electron microscopy (TEM) lattice image analysis has shown that the films consisted of face-centered tetragonal (fct) PtMn (ordered by MFA), body-centered cubic (bcc) NiMn (due to intermixing), in addition to face-centered cubic (fcc) Co, Ni, and PtMn phases. The peak shift (2-theta from 39.9° to 40.3°) in X-ray diffraction spectra also confirmed the structural transition from fcc PtMn to fct PtMn after MFA, in agreement with those obtained by lattice images in TEM. The interdiffusion induced by MFA was also evidenced by the depth profile of X-ray photoelectron spectroscopy (XPS). Further, the magnetic properties measured by vibrating sample magnetometry (VSM) have shown an increased coercivity in MFA-treated samples. This is attributed to the presence of ordered fct PtMn, and NiMn phases exchange coupled to the ferromagnetic [Co/Ni]2 layers. The vertical shift (Mshift = −0.03 memu) of the hysteresis loops is ascribed to the pinned spins resulting from perpendicular MFA processes.


2021 ◽  
Vol 11 (18) ◽  
pp. 8627
Author(s):  
Min-Soo Kim ◽  
Min-Ji Shin ◽  
Akshay Kumar ◽  
Kavita Kumari ◽  
Seok-Hwan Huh ◽  
...  

Ni wires, prepared through a hydrazine reduction, were exposed to external magnetic fields of different geometrical shape and configuration during the synthesis denoted as Ni-Non-Magnetic, Ni-Double, Ni-Single, Ni-Ring. Their effect on the wire morphology, magnetization and magnetic anisotropy was then investigated via various characterization techniques viz. X-ray diffraction (XRD), high-resolution field emission scanning electron microscopy (HR-FESEM), and vibrating sample magnetometer (VSM). The polycrystalline single phase of the Ni-wires with face centered cubic symmetry was confirmed through the analysis of XRD patterns. Analysis of HR-FESEM images revealed that the Ni-particles were aligned in form of wire-like morphology. The Ni-single sample formed the wires with minimum diameter compared to the parent sample. The magnetization measurements performed at 300 K and 50 K demonstrated the ferromagnetic behavior of all the samples. The room temperature saturation magnetization (MS) and anisotropy constant (K) of the Ni-wires were reduced upon providing the external field during synthesis. However, the low temperature (50 K) magnetization behavior was rather opposing, indicating enhanced values of MS and K. Among all, Ni-ring sample showed maximum anisotropy with a value of 3.84 × 104 erg/cm3 at 50 K. The ambiguous nature of the anisotropic constant and saturation magnetization ascribed partly to the variation in diameters of Ni-wires and to the intermittent spin-spin exchange interactions of unaligned/partially aligned particles during the synthesis. Briefly, in the present study, it was established that the morphology and magnetic anisotropy of the Ni-wires could be tailored through the external magnetic field assisted synthesis method.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 552
Author(s):  
Bo Li ◽  
Liqing He ◽  
Jianding Li ◽  
Hai-Wen Li ◽  
Zhouguang Lu ◽  
...  

Here we report a Ti50V50-10 wt.% C alloy with a unique lattice and microstructure for hydrogen storage development. Different from a traditionally synthesized Ti50V50 alloy prepared by a melting method and having a body-centered cubic (BCC) structure, this Ti50V50-C alloy synthesized by a mechanical alloying method is with a face-centered cubic (FCC) structure (space group: Fm-3m No. 225). The crystalline size is 60 nm. This alloy may directly absorb hydrogen near room temperature without any activation process. Mechanisms of the good kinetics from lattice and microstructure aspects were discussed. Findings reported here may indicate a new possibility in the development of future hydrogen storage materials.


2002 ◽  
Vol 29 (10) ◽  
pp. 86-1-86-4 ◽  
Author(s):  
B. Hnat ◽  
S. C. Chapman ◽  
G. Rowlands ◽  
N. W. Watkins ◽  
W. M. Farrell

Sign in / Sign up

Export Citation Format

Share Document