Kinetics of N-substituted phenothiazines and N-substituted phenoxazines oxidation catalyzed by fungal laccases

2009 ◽  
Vol 4 (1) ◽  
pp. 62-67 ◽  
Author(s):  
Lidija Tetianec ◽  
Juozas Kulys

AbstractLaccase-catalyzed oxidation of N-substituted phenothiazines and N-substituted phenoxazines was investigated at pH 5.5 and 25°C. The recombinant laccase from Polyporus pinsitus (rPpL) and the laccase from Myceliophthora thermophila (rMtL) were used. The dependence of initial reaction rate on substrate concentration was analyzed by applying the laccase action scheme in which the laccase native intermediate (NI) reacts with a substrate forming reduced enzyme. The reduced laccase produces peroxide intermediate (PI) which in turn decays to the NI. The calculated constant (kox) values of the PI formation are (6.1±3.1)×105 M−1s−1 for rPpL and (2.5±0.9)×104 M−1s−1 for rMtL. The bimolecular constants of the reaction of the native intermediate with electron donor (kred) vary in the interval from 2.2×105 to 2.1×107 M−1s−1 for rPpL and from 1.3×102 to 1.8×105 M-1s−1 for rMtL. The larger reactivity of rPpL in comparison to rMtL is associated with the higher redox potential of type I Cu of rPpL. The variation of kred values for both laccases correlates with the change of the redox potential of substrates. Following outer sphere (Marcus) electron transfer mechanism the calculated activationless electron transfer rate and the apparent reorganization energy are 5.0×107 M−1s−1 and 0.29 eV, respectively.

1982 ◽  
Vol 47 (7) ◽  
pp. 1773-1779 ◽  
Author(s):  
T. P. Radhakrishnan ◽  
A. K. Sundaram

The paper is a detailed study of the cyclic voltammetric behaviour of Eu3+ at HMDE in molar solutions of KCl, KBr, KI, KSCN and in 0.1M-EDTA solution with an indigenously built equipment. The computed values of the rate constants at various scan rates show good agreement with those reported by other electrochemical methods. In addition, the results indicate participation of a bridged activated complex in the electron-transfer step, the rate constants showing the trend SCN- > I- > Br- > Cl- usually observed for bridging order of these anions in homogeneous electron-transfer reactions. The results for Eu-EDTA system, however, indicate involvement of an outer sphere activated complex in the electrode reaction.


1977 ◽  
Vol 55 (23) ◽  
pp. 4048-4055 ◽  
Author(s):  
David G. Holah ◽  
Alan N. Hughes ◽  
Benjamin C. Hui

The reactions between NaBH4 and Ni(II) have been studied in the presence of a variety of ligands in an effort to determine (a) the conditions under which reduction occurs, (b) the extent of the reduction (e.g. to Ni(I), Ni(0) complexes, or to Ni metal or boride), and (c) whether intermediate Ni complexes can be isolated.With ligands having no π-bonding capabilities (NH3, ethylenediamine, edta, citrate), reduction depends upon the Ni:ligand ratio and, in the presence of an excess of the ligand, reduction of Ni(II) is very slow. When vacant coordination sites exist on the metal through dissociation of, for example, Ni(NH3)62+, allowing for the interaction of the BH4 group with the metal, then rapid reduction to the metal (or boride) takes place.With the π-bonding N-donor ligands 1,10-phenanthroline (phen) and 2,2′-bipyridyl (bipy) reduction of the stable ML32+ complexes probably occurs via an outer-sphere electron transfer mechanism but, in these cases, new species of the type NiL2X (L = phen, bipy; X = BH4, PF6, BPh4), which formally contain Ni(I), have been isolated.


2019 ◽  
Vol 43 (39) ◽  
pp. 15585-15595 ◽  
Author(s):  
Afsaneh Marandi ◽  
Mehrnaz Bahadori ◽  
Shahram Tangestaninejad ◽  
Majid Moghadam ◽  
Valiollah Mirkhani ◽  
...  

The catalytic activity of the Co-POM@MIL-101(Cr) composite in solvent-free cycloaddition of CO2 to epoxides and esterification of acetic acid with alcohols is due to an outer-sphere electron transfer mechanism using the Co(iii)/Co(ii) redox pair.


2008 ◽  
Vol 74 (21) ◽  
pp. 6746-6755 ◽  
Author(s):  
Zheming Wang ◽  
Chongxuan Liu ◽  
Xuelin Wang ◽  
Matthew J. Marshall ◽  
John M. Zachara ◽  
...  

ABSTRACT Because of their cell surface locations, the outer membrane c-type cytochromes MtrC and OmcA of Shewanella oneidensis MR-1 have been suggested to be the terminal reductases for a range of redox-reactive metals that form poorly soluble solids or that do not readily cross the outer membrane. In this work, we determined the kinetics of reduction of a series of Fe(III) complexes with citrate, nitrilotriacetic acid (NTA), and EDTA by MtrC and OmcA using a stopped-flow technique in combination with theoretical computation methods. Stopped-flow kinetic data showed that the reaction proceeded in two stages, a fast stage that was completed in less than 1 s, followed by a second, relatively slower stage. For a given complex, electron transfer by MtrC was faster than that by OmcA. For a given cytochrome, the reaction was completed in the order Fe-EDTA > Fe-NTA > Fe-citrate. The kinetic data could be modeled by two parallel second-order bimolecular redox reactions with second-order rate constants ranging from 0.872 μM−1 s−1 for the reaction between MtrC and the Fe-EDTA complex to 0.012 μM−1 s−1 for the reaction between OmcA and Fe-citrate. The biphasic reaction kinetics was attributed to redox potential differences among the heme groups or redox site heterogeneity within the cytochromes. The results of redox potential and reorganization energy calculations showed that the reaction rate was influenced mostly by the relatively large reorganization energy. The results demonstrate that ligand complexation plays an important role in microbial dissimilatory reduction and mineral transformation of iron, as well as other redox-sensitive metal species in nature.


1989 ◽  
Vol 42 (7) ◽  
pp. 1085 ◽  
Author(s):  
PJ Nichols ◽  
MW Grant

The kinetics of oxidation of dithiocarbamate anions to thiuram disulfides in aqueous acetone by {Fe(CN)6}3- and 11 other substitution inert metal complexes have been investigated. Outer-sphere electron transfer, resulting in the formation of dithiocarbamate thio radicals, is the rate determining step. A Marcus cross reaction treatment allows an estimate for the redox potential for the dithiocarbamate radical/anion couple. For diethyldithiocarbamate, E �(edtc/edtc-) = 425 � 33 mV v.s.c.e. and the outer-sphere electron self-exchange rate constant is log kex = 7.0 � 0.3. A comparison with thiophenolate oxidation is also given.


1996 ◽  
Vol 74 (5) ◽  
pp. 658-665 ◽  
Author(s):  
Kefei Wang ◽  
R.B. Jordan

The rates of oxidation of CoII(dmgBF2)2(OH2)2 by CoIII(NH3)5X2+ (X = Br−, Cl−, and N3−) have been studied at 25 °C in 0.10 M LiClO4. The rate constants are 50 ± 9, 2.6 ± 0.2, and 5.9 ± 1.0 M−1 s−1 for X = Br−, Cl−, and N3−, respectively, in 0.01 M acetate buffer at pH 4.7. The relative rates are consistent with the inner-sphere bridging mechanism established earlier by Adin and Espenson for the analogous reactions of CoII(dmgH)2(OH2)2. The rate constants with CoII(dmgBF2)2(OH2)2 typically are ~103 times smaller and this is attributed largely to the smaller driving force for the CoII(dmgBF2)2(OH2)2 complex. The outer-sphere oxidations of cobalt(II) sepulchrate by CoIII(dmgH)2(OH2)2+ (pH 4.76–7.35, acetate, MES, and PIPES buffers) and CoIII(dmgBF2)2(OH2)2+ (pH 3.3–7.42, chloroacetate, acetate, MES, and PIPES buffers) have been studied. The pH dependence gives the following rate constants (M−1 s−1) for the species indicated: (1.55 ± 0.09) × 105 (CoIII(dmgBF2)2(OH2)2+); (5.5 ± 0.3) × 103 (CoII(dmgH)2(OH2)2+); (3.1 ± 0.5) × 102 (CoIII(dmgH)2(OH2)(OH)); (2.5 ± 0.3) × 102 (CoIII(dmgBF2)2(OH2)(OH)). The known reduction potentials for cobalt(III) sepulchrate and the diaqua complexes, and the self-exchange rate for cobalt(II/III) sepulchrate, are used to estimate the self-exchange rate constants for the dioximate complexes. Comparisons to other reactions with cobalt sepulchrate indicates best estimates of the self-exchange rate constants are ~2.4 × 10−2 M−1 s−1 for CoII/III(dmgH)2(OH2)2and ~5.7 × 10−3 M−1 s−1 for CoII/III(dmgBF2)2(OH2)2. Key words: electron transfer, cobaloxime, inner sphere, outer sphere, self-exchange.


1990 ◽  
Vol 68 (9) ◽  
pp. 1499-1503 ◽  
Author(s):  
Conchita Arias ◽  
Fernando Mata ◽  
Joaquin F. Perez-Benito

The kinetics of oxidation of potassium iodide by hydrogen peroxide in aqueous perchloric acid has been studied both in the absence and in the presence of sodium molybdate by means of the initial-rates method. The law found for the total initial reaction rate is[Formula: see text]The activation energies associated with rate constants k1, k2, and k3 are 52 ± 1, 49 ± 1, and 42 ± 3 kJ mol−1, respectively. A mechanism in agreement with the experimental kinetic data is proposed, according to which rate constants k1, k2, and k3 correspond to the oxidations of iodide ion by H2O2, H3O2+ and H2MoO5, respectively. Keywords: catalysis, hydrogen peroxide, iodide ion, kinetics, molybdate ion.


Sign in / Sign up

Export Citation Format

Share Document