scholarly journals Identification of the DNA binding element of the human ZNF300 protein

Author(s):  
Hongling Qiu ◽  
Lu Xue ◽  
Li Gao ◽  
Huanjie Shao ◽  
Di Wang ◽  
...  

AbstractThe human ZNF300 gene is a member of the KRAB/C2H2 zinc finger gene family, the members of which are known to be involved in various developmental and pathological processes. Here, we show that the ZNF300 gene encodes a 68-kDa nuclear protein that binds DNA in a sequence-specific manner. The ZNF300 DNA binding site, C(t/a)GGGGG(c/g)G, was defined via a random oligonucleotide selection assay, and the DNA binding site was further confirmed by electrophoretic mobility shift assays. A potential ZNF300 binding site was found in the promoter region of the human IL-2Rβ gene. The results of electrophoretic mobility shift assays indicated that ZNF300 bound to the ZNF300 binding site in the IL-2Rβ promoter in vitro. Transient co-transfection assays showed that ZNF300 could activate the IL-2Rβ promoter, and that the activation was abrogated by the mutation of residues in the ZNF300 binding site. Identifying the DNA binding site and characterizing the transcriptional regulation property of ZNF300 would provide critical insights into its potential as a transcriptional regulator.

1990 ◽  
Vol 10 (6) ◽  
pp. 2653-2659 ◽  
Author(s):  
D Kardassis ◽  
M Hadzopoulou-Cladaras ◽  
D P Ramji ◽  
R Cortese ◽  
V I Zannis ◽  
...  

The promoter elements important for intestinal and hepatic transcription of the human apoB gene have been localized downstream of nucleotide -150. Footprinting analysis using hepatic nuclear extracts identified four protected regions, -124 to -100, -97 to -93, -86 to -33, and +33 to +52. Gel electrophoretic mobility shift assays showed that multiple factors interact with the apoB sequence -86 to -33, while the region -88 to -61 binds a single nuclear factor. Methylation interference analysis and nucleotide substitution mutagenesis identified the binding site of the factor between residues -78 and -68. Binding competition experiments indicate that this factor recognizes the regulatory elements of other liver-specific genes.


1994 ◽  
Vol 14 (9) ◽  
pp. 5975-5985 ◽  
Author(s):  
K M Sakamoto ◽  
J K Fraser ◽  
H J Lee ◽  
E Lehman ◽  
J C Gasson

Granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulates myeloid progenitor cell proliferation and enhances the function of terminally differentiated effector cells. Interleukin-3 (IL-3) stimulation results in the proliferation and maturation of early bone marrow progenitor cells. These activities are mediated by non-tyrosine kinase-containing receptors which consist of ligand-specific alpha subunits that complex with a common beta subunit required for signal transduction. Both GM-CSF and IL-3 rapidly and transiently induce expression of early growth response gene 1 (egr-1) in the human factor-dependent cell line TF-1. To define the mechanism of early response gene induction by GM-CSF and IL-3, growth factor- and serum-starved TF-1 cells transfected with recombinant constructs containing sequences of the human egr-1 promoter were stimulated with GM-CSF or IL-3. A 116-nucleotide (nt) region of the egr-1 promoter which contains sequences inducible by GM-CSF and IL-3 was defined. DNase I footprint analysis identified a 20-nt region, including nt -57 to -76, which contains a potential cyclic AMP (cAMP) response element (CRE). Electrophoretic mobility shift assays performed with CREB antibody confirmed the presence of CREB in the DNA-binding complex. Mutational analysis of the cytokine-responsive region of the egr-1 promoter revealed that both the cAMP response and serum response elements are required for induction by GM-CSF and IL-3. Nuclear extracts from GM-CSF- or IL-3-stimulated but not unstimulated TF-1 cells contain factors which specifically bind to the Egr-1-binding site in the nt -600 to -480 region of the promoter. Electrophoretic mobility shift assays were performed with antibodies against the Egr-1 protein to demonstrate the presence of the protein product in the shifted complex. Our studies suggest that the Egr-1 protein may further stimulate transcription of the egr-1 gene in response to GM-CSF as a secondary event.


2013 ◽  
Vol 42 (4) ◽  
pp. 2138-2146 ◽  
Author(s):  
Jose M. Muiño ◽  
Cezary Smaczniak ◽  
Gerco C. Angenent ◽  
Kerstin Kaufmann ◽  
Aalt D.J. van Dijk

Abstract Plant MADS-domain transcription factors act as key regulators of many developmental processes. Despite the wealth of information that exists about these factors, the mechanisms by which they recognize their cognate DNA-binding site, called CArG-box (consensus CCW6GG), and how different MADS-domain proteins achieve DNA-binding specificity, are still largely unknown. We used information from in vivo ChIP-seq experiments, in vitro DNA-binding data and evolutionary conservation to address these important questions. We found that structural characteristics of the DNA play an important role in the DNA binding of plant MADS-domain proteins. The central region of the CArG-box largely resembles a structural motif called ‘A-tract’, which is characterized by a narrow minor groove and may assist bending of the DNA by MADS-domain proteins. Periodically spaced A-tracts outside the CArG-box suggest additional roles for this structure in the process of DNA binding of these transcription factors. Structural characteristics of the CArG-box not only play an important role in DNA-binding site recognition of MADS-domain proteins, but also partly explain differences in DNA-binding specificity of different members of this transcription factor family and their heteromeric complexes.


1993 ◽  
Vol 13 (12) ◽  
pp. 7321-7333 ◽  
Author(s):  
Y Jacobs ◽  
C Vierra ◽  
C Nelson

A monoclonal antibody (Yae) was characterized and shown to specifically recognize E2A proteins in vivo, including the E2A-Pbx1 fusion gene products, p77E2A-Pbx1 and p85E2A-Pbx1. E2A proteins of a predominant molecular mass of 72 kDa, which comigrated with in vitro-produced rat E12 and and rat E47, were detected in human pro-B, pre-B, mature B, and plasma cell lines. The Yae antibody detected an E2A-containing microE2 enhancer element-binding complex (BCF-1) in pre-B- and mature B-cell lines in electrophoretic mobility shift assays which displayed a migration rate similar to that of in vitro-produced rat E12 and rat E47. A new E2A-containing microE2-binding species (P-E2A) was identified in plasma cells by using electrophoretic mobility shift assays. E2A proteins were detected in pro-B cells but were unable to bind the microE2 site. These observations suggest that the microE2 site is the target of stage-specific E2A regulatory complexes during B-cell development. Immunostaining analyses demonstrated the predominant nuclear localization of E2A proteins. Finally, we have identified an E2A form, designated I-E2A, which is unable to bind DNA. Our observations demonstrate novel in vivo mechanisms for the regulation of transcription by E2A proteins during B-cell development.


2021 ◽  
Author(s):  
Jillian N. Soceaa ◽  
Grant R. Bowmanb ◽  
Helen J. Wing

VirB is a key regulator of genes located on the large virulence plasmid (pINV) in the bacterial pathogen Shigella flexneri. VirB is unusual; it is not related to other transcriptional regulators, instead, it belongs to a family of proteins that primarily function in plasmid and chromosome partitioning; exemplified by ParB. Despite this, VirB does not function to segregate DNA, but rather counters transcriptional silencing mediated by the nucleoid structuring protein, H-NS. Since ParB localizes subcellularly as discrete foci in the bacterial cytoplasm, we chose to investigate the subcellular localization of VirB to gain novel insight into how VirB functions as a transcriptional anti-silencer. To do this, a GFP-VirB fusion that retains the regulatory activity of VirB and yet, does not undergo significant protein degradation in S. flexneri, was used. Surprisingly, discrete fluorescent foci were observed in live wild-type S. flexneri cells and an isogenic virB mutant using fluorescence microscopy. In contrast, foci were rarely observed (<10%) in pINV-cured cells or in cells expressing a GFP-VirB fusion carrying amino acid substitutions in the VirB DNA binding domain. Finally, the 25 bp VirB-binding site was demonstrated to be sufficient and necessary for GFP-VirB focus formation using a set of small surrogate plasmids. Combined, these data demonstrate that the VirB:DNA interactions required for the transcriptional anti-silencing activity of VirB on pINV are a prerequisite for the subcellular localization of VirB in the bacterial cytoplasm. The significance of these findings, in light of the anti-silencing activity of VirB, is discussed. Importance This study reveals the subcellular localization of VirB, a key transcriptional regulator of virulence genes found on the large virulence plasmid (pINV) in Shigella. Fluorescent signals generated by an active GFP-VirB fusion form 2, 3, or 4 discrete foci in the bacterial cytoplasm, predominantly at the quarter cell position. These signals are completely dependent upon VirB interacting with its DNA binding site found either on the virulence plasmid or an engineered surrogate. Our findings: 1) provide novel insight into VirB:pINV interactions, 2) suggest that VirB may have utility as a DNA marker, and 3) raise questions about how and why this anti-silencing protein that controls virulence gene expression on pINV of Shigella spp. forms discrete foci/hubs within the bacterial cytoplasm.


1993 ◽  
Vol 13 (12) ◽  
pp. 7321-7333
Author(s):  
Y Jacobs ◽  
C Vierra ◽  
C Nelson

A monoclonal antibody (Yae) was characterized and shown to specifically recognize E2A proteins in vivo, including the E2A-Pbx1 fusion gene products, p77E2A-Pbx1 and p85E2A-Pbx1. E2A proteins of a predominant molecular mass of 72 kDa, which comigrated with in vitro-produced rat E12 and and rat E47, were detected in human pro-B, pre-B, mature B, and plasma cell lines. The Yae antibody detected an E2A-containing microE2 enhancer element-binding complex (BCF-1) in pre-B- and mature B-cell lines in electrophoretic mobility shift assays which displayed a migration rate similar to that of in vitro-produced rat E12 and rat E47. A new E2A-containing microE2-binding species (P-E2A) was identified in plasma cells by using electrophoretic mobility shift assays. E2A proteins were detected in pro-B cells but were unable to bind the microE2 site. These observations suggest that the microE2 site is the target of stage-specific E2A regulatory complexes during B-cell development. Immunostaining analyses demonstrated the predominant nuclear localization of E2A proteins. Finally, we have identified an E2A form, designated I-E2A, which is unable to bind DNA. Our observations demonstrate novel in vivo mechanisms for the regulation of transcription by E2A proteins during B-cell development.


2001 ◽  
Vol 276 (50) ◽  
pp. 47664-47670 ◽  
Author(s):  
Woo-Jin Chang ◽  
Rafael Alvarez-Gonzalez

Recent studies suggest that the synthesis of protein-bound ADP-ribose polymers catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1) regulates eucaryotic gene expression, including the NF-κB-dependent pathway. Here, we report the molecular mechanism by which PARP-1 activates the sequence-specific binding of NF-κB to its oligodeoxynucleotide. We co-incubated pure recombinant human PARP-1 and the p50 subunit of NF-κB (NF-κB-p50) in the presence or absence of βNAD+in vitro.Electrophoretic mobility shift assays showed that, when PARP-1 was present, NF-κB-p50 DNA binding was dependent on the presence of βNAD+. DNA binding by NF-κB-p50 was not efficient in the absence of βNAD+. In fact, the binding was not efficient in the presence of 3-aminobenzamide (3-AB) either. Thus, we conclude that NF-κB-p50 DNA binding is protein-poly(ADP-ribosyl)ation dependent. Co-immunoprecipitation and immunoblot analysis revealed that PARP-1 physically interacts with NF-κB-p50 with high specificity in the absence of βNAD+. Because NF-kB-p50 was not an efficient covalent target for poly(ADP-ribosyl)ation, our results are consistent with the conclusion that the auto-poly(ADP-ribosyl)ation reaction catalyzed by PARP-1 facilitates the binding of NF-κB-p50 to its DNA by inhibiting the specific protein·protein interactions between NF-κB-p50 and PARP-1. We also report the activation of NF-κB DNA binding by the automodification reaction of PARP-1 in cultured HeLa cells following exposure to H2O2. In these experiments, preincubation of HeLa cells with 3-AB, prior to oxidative damage, strongly inhibited NF-κB activationin vivoas well.


1992 ◽  
Vol 12 (10) ◽  
pp. 4486-4495 ◽  
Author(s):  
E F Petricoin ◽  
R H Hackett ◽  
H Akai ◽  
K Igarashi ◽  
D S Finbloom ◽  
...  

Phorbol esters activate the expression of a variety of early-response genes through protein kinase C-dependent pathways. In addition, phorbol esters may promote cell growth by the inhibition of expression of cellular gene products regulated by antiproliferative agents such as interferons (IFN)s. In human diploid fibroblasts, phorbol 12-myristate 13-acetate (PMA) selectively inhibits the IFN-alpha-induced cellular gene ISG54. Using transient transfection assays, we have delineated two elements in the promoter of this gene that are necessary for the inhibitory actions of PMA. These elements include (i) the IFN-stimulated response element (ISRE) which is necessary for IFN-alpha-induced cellular gene expression, and (ii) an element located near the site of transcription initiation. IFN-alpha treatment resulted in the rapid induction of ISGF3, a multisubunit transcription factor which binds to the ISRE. PMA caused a substantial reduction in IFN alpha-induced ISGF3 in both nuclear and cytoplasmic extracts, as determined by electrophoretic mobility shift assays with the ISRE as a probe. In vitro reconstitution experiments revealed that IFN-alpha activation of the ISGF3 alpha component of ISGF3 was not affected by PMA. Further experiments were consistent with the possibility that PMA regulated the activity of a cellular factor which competed with ISGF3 gamma for binding of the activated ISGF3 alpha polypeptides. Electrophoretic mobility shift assays using the cap site of ISG54 as a probe demonstrated the formation of a specific complex whose DNA binding activity was not affected by treatment of cells with PMA or IFN-alpha. Competitive inhibition studies were consistent with the DNA-protein complex at the cap site of ISG54 containing proteins with DNA binding sites in common with those which also interact with the ISRE. These data suggest a unique regulatory mechanism by which phorbol esters can modulate IFN signaling.


1992 ◽  
Vol 12 (3) ◽  
pp. 1043-1053 ◽  
Author(s):  
C B Thompson ◽  
C Y Wang ◽  
I C Ho ◽  
P R Bohjanen ◽  
B Petryniak ◽  
...  

The recent definition of a consensus DNA binding sequence for the Ets family of transcription factors has allowed the identification of potential Ets binding sites in the promoters and enhancers of many inducible T-cell genes. In the studies described in this report, we have identified two potential Ets binding sites, EBS1 and EBS2, which are conserved in both the human and murine interleukin-2 enhancers. Within the human enhancer, these two sites are located within the previously defined DNase I footprints, NFAT-1 and NFIL-2B, respectively. Electrophoretic mobility shift and methylation interference analyses demonstrated that EBS1 and EBS2 are essential for the formation of the NFAT-1 and NFIL-2B nuclear protein complexes. Furthermore, in vitro mutagenesis experiments demonstrated that inducible interleukin-2 enhancer function requires the presence of either EBS1 or EBS2. Two well-characterized Ets family members, Ets-1 and Ets-2, are reciprocally expressed during T-cell activation. Surprisingly, however, neither of these proteins bound in vitro to EBS1 or EBS2. We therefore screened a T-cell cDNA library under low-stringency conditions with a probe from the DNA binding domain of Ets-1 and isolated a novel Ets family member, Elf-1. Elf-1 contains a DNA binding domain that is nearly identical to that of E74, the ecdysone-inducible Drosophila transcription factor required for metamorphosis (hence the name Elf-1, for E74-like factor 1). Elf-1 bound specifically to both EBS1 and EBS2 in electrophoretic mobility shift assays. It also bound to the purine-rich CD3R element from the human immunodeficiency virus type 2 long terminal repeat, which is required for inducible virus expression in response to signalling through the T-cell receptor. Taken together, these results demonstrate that multiple Ets family members with apparently distinct DNA binding specificities regulate differential gene expression in resting and activated T cells.


Sign in / Sign up

Export Citation Format

Share Document