Studies on the development and role of some cell-mediated immune responses in experimental toxocarosis in mice

2008 ◽  
Vol 53 (2) ◽  
Author(s):  
Natalia Wnukowska ◽  
Tadeusz Dzbeński

AbstractThe studies were undertaken to investigate the development of some cell-mediated immune responses in experimental toxocarosis in mice and to assess the influence of these responses on the course of infection. Mice were infected orally with 350 eggs of Toxocara canis and reinfected with the same dose of parasites after 8 weeks. Groups of infected animals were killed each week of the experiments to obtain spleens, livers and brains for further studies. Lymphocytes from removed spleens were analysed by flow-cytometry for CD4 and CD8 expression and cultured in vitro to measure their responses to Concanavalin A and excretory-secretory (ES) antigen of T. canis in a lymphocyte transformation test. Pieces of livers were used to prepare paraffin sections to be stained later with haematoxylin and eosin, whereas whole brains of the infected animals were examined for the presence of parasite larvae. The results of the studies showed depression of T-cell responses to ConA in early stages of infection and significant increase in the blastogenic responses to the ES antigen from week 4 following infection. The depression of T-cell responses was accompanied by lowered CD4+/CD8+ ratio resulting from increased percentages of CD8+ T cells. Histopathological examination of liver sections revealed trapping of larvae in T. canis reinfected mice. The intensity of infection as measured by larval recoveries from the brains of mice increased gradually up to the 8th week of infection, but did not show significant changes after reinfection, testifying to the development of long-lasting protective immunity during primary infection.

npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Mauro Di Pilato ◽  
Miguel Palomino-Segura ◽  
Ernesto Mejías-Pérez ◽  
Carmen E. Gómez ◽  
Andrea Rubio-Ponce ◽  
...  

AbstractNeutrophils are innate immune cells involved in the elimination of pathogens and can also induce adaptive immune responses. Nα and Nβ neutrophils have been described with distinct in vitro capacity to generate antigen-specific CD8 T-cell responses. However, how these cell types exert their role in vivo and how manipulation of Nβ/Nα ratio influences vaccine-mediated immune responses are not known. In this study, we find that these neutrophil subtypes show distinct migratory and motility patterns and different ability to interact with CD8 T cells in the spleen following vaccinia virus (VACV) infection. Moreover, after analysis of adhesion, inflammatory, and migration markers, we observe that Nβ neutrophils overexpress the α4β1 integrin compared to Nα. Finally, by inhibiting α4β1 integrin, we increase the Nβ/Nα ratio and enhance CD8 T-cell responses to HIV VACV-delivered antigens. These findings provide significant advancements in the comprehension of neutrophil-based control of adaptive immune system and their relevance in vaccine design.


2011 ◽  
Vol 19 (1) ◽  
pp. 84-95 ◽  
Author(s):  
Jin Huk Choi ◽  
Joe Dekker ◽  
Stephen C. Schafer ◽  
Jobby John ◽  
Craig E. Whitfill ◽  
...  

ABSTRACTThe immune response to recombinant adenoviruses is the most significant impediment to their clinical use for immunization. We test the hypothesis that specific virus-antibody combinations dictate the type of immune response generated against the adenovirus and its transgene cassette under certain physiological conditions while minimizing vector-induced toxicity.In vitroandin vivoassays were used to characterize the transduction efficiency, the T and B cell responses to the encoded transgene, and the toxicity of 1 × 1011adenovirus particles mixed with different concentrations of neutralizing antibodies. Complexes formed at concentrations of 500 to 0.05 times the 50% neutralizing dose (ND50) elicited strong virus- and transgene-specific T cell responses. The 0.05-ND50formulation elicited measurable anti-transgene antibodies that were similar to those of virus alone (P= 0.07). This preparation also elicited very strong transgene-specific memory T cell responses (28.6 ± 5.2% proliferation versus 7.7 ± 1.4% for virus alone). Preexisting immunity significantly reduced all responses elicited by these formulations. Although lower concentrations (0.005 and 0.0005 ND50) of antibody did not improve cellular and humoral responses in naïve animals, they did promote strong cellular (0.005 ND50) and humoral (0.0005 ND50) responses in mice with preexisting immunity. Some virus-antibody complexes may improve the potency of adenovirus-based vaccines in naïve individuals, while others can sway the immune response in those with preexisting immunity. Additional studies with these and other virus-antibody ratios may be useful to predict and model the type of immune responses generated against a transgene in those with different levels of exposure to adenovirus.


2017 ◽  
Vol 35 (7_suppl) ◽  
pp. 162-162
Author(s):  
Emmanuel S. Antonarakis ◽  
David I. Quinn ◽  
Adam S. Kibel ◽  
Daniel Peter Petrylak ◽  
Tuyen Vu ◽  
...  

162 Background: Sip-T is an FDA-approved immunotherapy for patients (pts) with asymptomatic or minimally symptomatic metastatic CRPC. Sip-T is manufactured from autologous peripheral blood mononuclear cells cultured with the immunogen PA2024, a fusion antigen of prostatic acid phosphatase (PAP) conjugated to granulocyte macrophage colony-stimulating factor. After sip-T, antibody and T cell responses to PA2024 and/or PAP correlate with improved survival. To further elucidate the mechanism of sip-T–induced immune responses, we evaluated the proliferative and lytic ability of PA2024- and PAP-specific CD8+ T cells. Methods: Mononuclear blood cells were labeled with the membrane dye carboxyfluorescein succinimidyl ester (CFSE) and cultured with PA2024 or PAP. In vitro proliferative and lytic CD8+ (cytotoxic T lymphocyte [CTL]) T cell responses to these antigens were evaluated by flow cytometry. For proliferation, progressive dilution of CFSE was measured. For CTL activity, the loss of intracellular granzyme B (GzB), indicating exocytosis of this apoptosis-mediating enzyme, was assessed. Samples were from 2 sip-T clinical trials STAND (NCT01431391) and STRIDE (NCT01981122), hormone-sensitive and CRPC pts, respectively. Results: Six wk after sip-T administration, CD8+ PAP- and PA2024-specific responses were observed (n=14 pts assessed). The magnitude of PA2024-specific CD8+ proliferative responses was greater than that for PAP-specific responses. CD8+ T cells from a subset of pts who exhibited PA2024- and/or PAP-specific proliferative responses were assessed for lytic ability. After in vitro antigen stimulation, CTL activity in all evaluated samples (n=14, PA2024; n=13, PAP) was demonstrated by a significant decrease (p<0.05) in intracellular GzB relative to a no-antigen control. Conclusions: Sip-T induced CD8+ CTL proliferation against the target antigens PAP and PA2024. Moreover, antigen-specific CTL activity provides the first direct evidence that sip-T can induce tumor cell lysis. These antigen-specific CD8+ lytic abilities were observed within 6 wk following sip-T, suggesting rapidly generated immune responses. Clinical trial information: NCT01431391; NCT01981122.


2003 ◽  
Vol 197 (2) ◽  
pp. 143-151 ◽  
Author(s):  
Carlos Ocaña-Morgner ◽  
Maria M. Mota ◽  
Ana Rodriguez

Malaria starts with Plasmodium sporozoites infection of the host's liver, where development into blood stage parasites occurs. It is not clear why natural infections do not induce protection against the initial liver stage and generate low CD8+ T cell responses. Using a rodent malaria model, we show that Plasmodium blood stage infection suppresses CD8+ T cell immune responses that were induced against the initial liver stage. Blood stage Plasmodium affects dendritic cell (DC) functions, inhibiting maturation and the capacity to initiate immune responses and inverting the interleukin (IL)-12/IL-10 secretion pattern. The interaction of blood stage parasites with DCs induces the secretion of soluble factors that inhibit the activation of CD8+ T cells in vitro and the suppression of protective CD8+ T cell responses against the liver stage in vivo. We propose that blood stage infection induces DCs to suppress CD8+ T cell responses in natural malaria infections. This evasion mechanism leaves the host unprotected against reinfection by inhibiting the immune response against the initial liver stage of the disease.


2004 ◽  
Vol 78 (17) ◽  
pp. 9317-9324 ◽  
Author(s):  
Jean Publicover ◽  
Elizabeth Ramsburg ◽  
John K. Rose

ABSTRACT Experimental vaccines based on recombinant vesicular stomatitis viruses (VSV) expressing foreign viral proteins are protective in several animal disease models. Although these attenuated viruses are nonpathogenic in nonhuman primates when given by nasal, oral, or intramuscular routes, they are pathogenic in mice when given intranasally, and further vector attenuation may be required before human trials with VSV-based vectors can begin. Mutations truncating the VSV glycoprotein (G) cytoplasmic domain from 29 to 9 or 1 amino acid (designated CT9 or CT1, respectively) were shown previously to attenuate VSV growth in cell culture and pathogenesis in mice. Here we show that VSV recombinants carrying either the CT1 or CT9 deletion and expressing the human immunodeficiency virus (HIV) Env protein are nonpathogenic in mice, even when given by the intranasal route. We then carried out a detailed analysis of the CD8+ T-cell responses, including in vivo cytotoxic T-cell activity, induced by these vectors. When given by either the intranasal or intraperitoneal route, the VSV-CT9 vector expressing HIV Env elicited primary and memory CD8+ T-cell responses to Env equivalent to those elicited by recombinant wild-type VSV expressing Env. The VSV-CT1 vector also induced potent CD8+ T-cell responses after intraperitoneal vaccination, but was less effective when given by the intranasal route. The VSV-CT1 vector was also substantially less effective than the VSV-CT9 or wild-type vector at inducing antibody to Env. The VSV-CT9 vector appears ideal because of its lack of pathogenesis, propagation to high titers in vitro, and stimulation of strong cellular and humoral immune responses.


2003 ◽  
Vol 77 (5) ◽  
pp. 2998-3006 ◽  
Author(s):  
Dejiang Zhou ◽  
Xiaomin Lai ◽  
Yun Shen ◽  
Prabhat Sehgal ◽  
Ling Shen ◽  
...  

ABSTRACT Adaptive immune responses of γδ T cells during active mycobacterial coinfection of human immunodeficiency virus-infected humans have not been studied. Macaques infected with the simian immunodeficiency virus (SIV) SIVmac were employed to determine the extent to which a coincident AIDS virus infection might compromise immune responses of mycobacterium-specific Vγ2Vδ2+ T cells during active mycobacterial infection. Control SIVmac-negative macaques developed primary and recall expansions of phosphoantigen-specific Vγ2Vδ2+ T cells after Mycobacterium bovis BCG infection and BCG reinfection, respectively. In contrast, SIVmac-infected macaques did not exhibit sound primary and recall expansions of Vγ2Vδ2+ T cells in the blood and pulmonary alveoli following BCG infection and reinfection. The absence of adaptive Vγ2Vδ2+ T-cell responses was associated with profound CD4+ T-cell deficiency and subsequent development of SIVmac-related tuberculosis-like disease in the coinfected monkeys. Consistently, Vγ2Vδ2+ T cells from coinfected monkeys displayed a reduced capacity to expand in vitro following stimulation with phosphoantigen. The reduced ability of Vγ2Vδ2+ peripheral blood lymphocytes (PBL) to expand could be restored to some extent by coculture of these cells with CD4+ T cells purified from PBL of SIV-negative monkeys. Furthermore, naïve monkeys inoculated simultaneously with SIVmac and BCG were unable to sustain expansion of Vγ2Vδ2+ T cells at the time that the coinfected monkeys developed lymphoid depletion and a fatal tuberculosis-like disease. Nevertheless, no deletion in Vδ2 T-cell receptor repertoire was identified in SIVmac-BCG-coinfected macaques, implicating an SIVmac-induced down-regulation rather than a clonal exhaustion of these cells. Thus, an SIVmac-induced compromise of the adaptive Vγ2Vδ2+ T-cell responses may contribute to the immunopathogenesis of the SIV-related tuberculosis-like disease in macaques.


2021 ◽  
Vol 9 (9) ◽  
pp. e002754
Author(s):  
Eva Bräunlein ◽  
Gaia Lupoli ◽  
Franziska Füchsl ◽  
Esam T Abualrous ◽  
Niklas de Andrade Krätzig ◽  
...  

BackgroundNeoantigens derived from somatic mutations correlate with therapeutic responses mediated by treatment with immune checkpoint inhibitors. Neoantigens are therefore highly attractive targets for the development of therapeutic approaches in personalized medicine, although many aspects of their quality and associated immune responses are not yet well understood. In a case study of metastatic malignant melanoma, we aimed to perform an in-depth characterization of neoantigens and respective T-cell responses in the context of immune checkpoint modulation.MethodsThree neoantigens, which we identified either by immunopeptidomics or in silico prediction, were investigated using binding affinity analyses and structural simulations. We isolated seven T-cell receptors (TCRs) from the patient’s immune repertoire recognizing these antigens. TCRs were compared in vitro by multiparametric analyses including functional avidity, multicytokine secretion, and cross-reactivity screenings. A xenograft mouse model served to study in vivo functionality of selected TCRs. We investigated the patient’s TCR repertoire in blood and different tumor-related tissues over 3 years using TCR beta deep sequencing.ResultsSelected mutated peptide ligands with proven immunogenicity showed similar binding affinities to the human leukocyte antigen complex and comparable disparity to their wild-type counterparts in molecular dynamic simulations. Nevertheless, isolated TCRs recognizing these antigens demonstrated distinct patterns in functionality and frequency. TCRs with lower functional avidity showed at least equal antitumor immune responses in vivo. Moreover, they occurred at high frequencies and particularly demonstrated long-term persistence within tumor tissues, lymph nodes and various blood samples associated with a reduced activation pattern on primary in vitro stimulation.ConclusionsWe performed a so far unique fine characterization of neoantigen-specific T-cell responses revealing defined reactivity patterns of neoantigen-specific TCRs. Our data highlight qualitative differences of these TCRs associated with function and longevity of respective T cells. Such features need to be considered for further optimization of neoantigen targeting including adoptive T-cell therapies using TCR-transgenic T cells.


2021 ◽  
Author(s):  
Eva Bräunlein ◽  
Gaia Lupoli ◽  
Esam T. Abualrous ◽  
Niklas de Andrade Krätzig ◽  
Dario Gosmann ◽  
...  

AbstractNeoantigens derived from somatic mutations have been demonstrated to correlate with therapeutic responses mediated by treatment with immune checkpoint inhibitors. Neoantigens are therefore highly attractive targets for the development of personalized medicine approaches although their quality and associated immune responses is not yet well understood. In a case study of metastatic malignant melanoma, we performed an in-depth characterization of neoantigens and respective T-cell responses in the context of immunotherapy with Ipilimumab. Three neoantigens identified either by immunopeptidomics or in silico prediction were investigated using binding affinity analyses and structural simulations. We isolated seven T-cell receptors (TCRs) from the patient immune repertoire recognizing these antigens. TCRs were compared in-vitro and in-vivo with multi-parametric analyses. Identified immunogenic peptides showed similar binding affinities to the human leukocyte antigen (HLA) complex and comparable differences to their wildtype counterparts in molecular dynamic simulations. Nevertheless, isolated TCRs differed substantially in functionality and frequency. In fact, TCRs with comparably lower functional avidity and higher potential for cross-reactivity provided at least equal anti-tumor immune responses in vivo. Of note, these TCRs showed a reduced activation pattern upon primary in vitro stimulation. Exploration of the TCR-β repertoire in blood and in different tumor-related tissues over three years, offered insights on the high frequency and particular long-term persistence of low-avidity TCRs. These data indicate that qualitative differences of neoantigen-specific TCRs and their impact on function and longevity need to be considered for neoantigen targeting by adoptive T-cell therapy using TCR-transgenic T cells.Statement of translational relevanceImmunotherapy has demonstrated high efficacy in diverse malignancies. Neoantigens derived from mutations provide promising targets for safe and highly tumor-specific therapeutic approaches. Yet, single determinants of an effective and enduring T-cell mediated tumor rejection are still not well understood. We analyzed in detail seven neoantigen-specific T-cell receptors (TCRs) derived from a melanoma patient targeting three different altered peptide ligands identified by mass spectrometry and prediction analyses. Functional characterization of these TCRs revealed potent anti-tumor reactivity of all TCRs. Of special interest, TCRs with comparably lower affinity demonstrated effective in vivo activity as well as dominant spatial and temporal distribution in blood and tissue. Functional differences of TCR may require further T-cell and/or TCR engineering and should be considered for future clinical trial designs.


2016 ◽  
Vol 34 (2_suppl) ◽  
pp. 165-165 ◽  
Author(s):  
Emmanuel S. Antonarakis ◽  
David I. Quinn ◽  
Adam S. Kibel ◽  
Daniel Peter Petrylak ◽  
Nancy N. Chang ◽  
...  

165 Background: Sip-T is an FDA-approved autologous immunotherapy for patients (pts) with asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer (mCRPC). Sip-T is manufactured from peripheral blood mononuclear cells cultured with PA2024, a fusion antigen of prostatic acid phosphatase (PAP) conjugated to granulocyte macrophage-colony stimulating factor (GM-CSF). In sip-T–treated pts, T cell and antibody responses to PA2024 or PAP as well as antibody responses to secondary antigens (i.e., antigen spread) correlate with improved overall survival. To explore the biology of this relationship, we further characterized the T cell subpopulations involved in the cellular immune responses to sip-T. Methods: In vitro proliferative CD8+ (cytotoxic T lymphocyte) and CD4+ (T helper) T cell responses to PA2024 and PAP as well as to secondary antigens (PSA, LGALS3, and KRAS) were evaluated using flow cytometry on pt samples from two sip-T–containing clinical trials (STAND [NCT01431391] and STRIDE [NCT01981122]). Results: PA2024-specific CD8+ and CD4+ responses were observed beginning 2 weeks after the first sip-T infusion through week 26 in most evaluable pts. CD8+ and CD4+ responses to PAP were also observed, although the magnitude of this response (to a self-antigen) was smaller when compared with PA2024 responses. Most pts with CD8+ responses to PA2024 also had a CD4+ response, which occurred more frequently than CD8+ responses. Both CD8+ and CD4+ responses to secondary antigens were amplified after sip-T, and these CD8+ proliferative responses to secondary antigens were greater in magnitude compared with CD4+ responses. Conclusions: Here,we report the first evidence of antigen-specific CD8+ responses in pts receiving sip-T, indicating CD8+ T cell involvement in sip-T–mediated immune responses that occur in concert with the expected CD4+ T cell responses to soluble antigens (i.e., PA2024). These CD8+ responses were durable, lasting up to 26 weeks post–sip-T treatment. Importantly, responses to secondary antigens and in particular, CD8+ responses, were also amplified after sip-T treatment, suggesting that antigen spread could be resulting from sip-T–mediated tumor cell lysis. Clinical trial information: NCT01431391 and NCT01981122.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A438-A438
Author(s):  
Mara Shainheit ◽  
Devin Champagne ◽  
Gabriella Santone ◽  
Syukri Shukor ◽  
Ece Bicak ◽  
...  

BackgroundATLASTM is a cell-based bioassay that utilizes a cancer patient‘s own monocyte-derived dendritic cells and CD4+ and CD8+ T cells to screen their mutanome and identify neoantigens that elicit robust anti-tumor T cell responses, as well as, deleterious InhibigensTM.1 GEN-009, a personalized vaccine comprised of 4–20 ATLAS-identified neoantigens combined with Hiltonol®, harnesses the power of neoantigen-specific T cells to treat individuals with solid tumors. The safety and efficacy of GEN-009 is being assessed in a phase 1/2a clinical trial (NCT03633110).MethodsA cohort of 15 adults with solid tumors were enrolled in the study. During the screening period, patients received standard of care PD-1-based immunotherapies appropriate for their tumor type. Subsequently, patients were immunized with GEN-009 with additional doses administered at 3, 6, 12, and 24 weeks. Peripheral blood mononuclear cells (PBMCs) were collected at baseline, pre-vaccination (D1), as well as 29, 50, 92, and 176 days post first dose. Vaccine-induced immunogenicity and persistence were assessed by quantifying neoantigen-specific T cell responses in ex vivo and in vitro stimulation dual-analyte fluorospot assays. Polyfunctionality of neoantigen-specific T cells was evaluated by intracellular cytokine staining. Additionally, potential correlations between the ATLAS-identified profile and vaccine-induced immunogenicity were assessed.ResultsGEN-009 augmented T cell responses in 100% of evaluated patients, attributable to vaccine and not checkpoint blockade. Furthermore, neoantigen-induced secretion of IFNγ and/or TNFα by PBMCs, CD4+, and CD8+ T cells was observed in all patients. Responses were primarily from polyfunctional TEM cells and detectable in both CD4+ and CD8+ T cell subsets. Some patients had evidence of epitope spreading. Unique response patterns were observed for each patient with no apparent relationship between tumor types and time to emergence, magnitude or persistence of response. Ex vivo vaccine-induced immune responses were observed as early as 1 month, and in some cases, persisted for 176 days. Clinical efficacy possibly attributable to GEN-009 was observed in several patients, but no correlation has yet been identified with neoantigen number or magnitude of immune response.ConclusionsATLAS empirically identifies stimulatory neoantigens using the patient‘s own immune cells. GEN-009, which is comprised of personalized, ATLAS-identified neoantigens, elicits early, long-lasting and polyfunctional neoantigen-specific CD4+ and CD8+ T cell responses in individuals with advanced cancer. Several patients achieved clinical responses that were possibly attributable to vaccine; efforts are underway to explore T cell correlates of protection. These data support that GEN-009, in combination with checkpoint blockade, represents a unique approach to treat solid tumors.AcknowledgementsWe are grateful to the patients and their families who consented to participate in the GEN-009-101 clinical trial.Trial RegistrationNCT03633110Ethics ApprovalThis study was approved by Western Institutional Review Board, approval number 1-1078861-1. All subjects contributing samples provided signed individual informed consent.ReferenceDeVault V, Starobinets H, Adhikari S, Singh S, Rinaldi S, Classon B, Flechtner J, Lam H. Inhibigens, personal neoantigens that drive suppressive T cell responses, abrogate protection of therapeutic anti-tumor vaccines. J. Immunol 2020; 204(1 Supplement):91.15.


Sign in / Sign up

Export Citation Format

Share Document