Cloning and molecular characterization of cDNAs encoding three Ancylostoma ceylanicum secreted proteins

2013 ◽  
Vol 58 (1) ◽  
Author(s):  
Anna Siwińska ◽  
Piotr Bąska ◽  
Emilia Daniłowicz-Luebert ◽  
Kamil Januszkiewicz ◽  
Ewa Długosz ◽  
...  

AbstractAncylostoma ceylanicum belongs to a group of soil-transmitted helminths, which infect almost 576 mln people worldwide and are a major cause of anaemia and malnutrition. Upon contact with a permissive host, third-stage larvae (L3) residing in the environment become activated larvae (ssL3), a process associated with changes in the profile of gene expression. Ancylostoma secreted proteins (ASPs) are the major proteins secreted during larvae activation and play a crucial role in hookworm adaptation to parasitism. Here we report the cloning using RACE-PCR technique of three novel ASPs from the hookworm A. ceylanicum (Ace-asp-3, Ace-asp-4, and Ace-asp-5) and computational analysis of the protein sequences. All three proteins contain SCP (Sperm Coating Protein) domain characteristic for previously described ASP proteins. Real-time PCR analysis shows significant up-regulation of Ace-asp-3 and Ace-asp-5 expression in adult worms and correlated down-regulation in ssL3 larvae. On the other hand, expression of Ace-asp-4 was increased in ssL3 stages and decreased in adult parasites.

2021 ◽  
Author(s):  
Nathan Jawadi Chadi ◽  
Paul Saighi ◽  
Fabio Rocha Jimenez Vieira ◽  
Juliana Silva Bernardes

The characterization of protein functions is one of the main challenges in bioinformatics. Proteins are often composed of individual units termed domains, motifs that can evolve independently. The domain architecture of a given protein is the particular order and the content of its numerous domains. Some computational approaches predict the most likely domain architecture for a set of proteins. However, a few numbers of visualization tools exist, and most of them are unavailable. Here we present DAVI, an efficient and user-friendly web server for protein domain architecture clustering and visualization. DAVI accepts the output of most used domain architecture prediction tools and also produces domain architectures for a set of protein sequences. It provides a rich visualization for comparing, analyzing, and visualizing domain architectures.


Author(s):  
J. I. Bennetch

In a recent study of the superplastic forming (SPF) behavior of certain Al-Li-X alloys, the relative misorientation between adjacent (sub)grains proved to be an important parameter. It is well established that the most accurate way to determine misorientation across boundaries is by Kikuchi line analysis. However, the SPF study required the characterization of a large number of (sub)grains in each sample to be statistically meaningful, a very time-consuming task even for comparatively rapid Kikuchi analytical techniques.In order to circumvent this problem, an alternate, even more rapid in-situ Kikuchi technique was devised, eliminating the need for the developing of negatives and any subsequent measurements on photographic plates. All that is required is a double tilt low backlash goniometer capable of tilting ± 45° in one axis and ± 30° in the other axis. The procedure is as follows. While viewing the microscope screen, one merely tilts the specimen until a standard recognizable reference Kikuchi pattern is centered, making sure, at the same time, that the focused electron beam remains on the (sub)grain in question.


1994 ◽  
Vol 72 (02) ◽  
pp. 180-185 ◽  
Author(s):  
David J Mancuso ◽  
Elodee A Tuley ◽  
Ricardo Castillo ◽  
Norma de Bosch ◽  
Pler M Mannucci ◽  
...  

Summaryvon Willebrand factor gene deletions were characterized in four patients with severe type III von Willebrand disease and alloantibodies to von Willebrand factor. A PCR-based strategy was used to characterize the boundaries of the deletions. Identical 30 kb von Willebrand factor gene deletions which include exons 33 through 38 were identified in two siblings of one family by this method. A small 5 base pair insertion (CCTGG) was sequenced at the deletion breakpoint. PCR analysis was used to detect the deletion in three generations of the family, including two family members who are heterozygous for the deletion. In a second family, two type III vWD patients, who are distant cousins, share an -56 kb deletion of exons 22 through 43. The identification and characterization of large vWF gene deletions in these type III vWD patients provides further support for the association between large deletions in both von Willebrand factor alleles and the development of inhibitory alloantibodies.


1982 ◽  
Vol 47 (03) ◽  
pp. 197-202 ◽  
Author(s):  
Kurt Huber ◽  
Johannes Kirchheimer ◽  
Bernd R Binder

SummaryUrokinase (UK) could be purified to apparent homogeneity starting from crude urine by sequential adsorption and elution of the enzyme to gelatine-Sepharose and agmatine-Sepharose followed by gel filtration on Sephadex G-150. The purified product exhibited characteristics of the high molecular weight urokinase (HMW-UK) but did contain two distinct entities, one of which exhibited a two chain structure as reported for the HMW-UK while the other one exhibited an apparent single chain structure. The purification described is rapid and simple and results in an enzyme with probably no major alterations. Yields are high enough to obtain purified enzymes for characterization of UK from individual donors.


Author(s):  
Ahmad Z Al-Herrawy ◽  
Mohamed A Marouf ◽  
Mahmoud A. Gad

Genus Acanthamoeba causes 3 clinical syndromes amebic keratitis, granulomatous amebic encephalitis and disseminated granulomatous amebic disease (eg, sinus, skin and pulmonary infections). A total of 144 tap water samples were collected from Giza governorate, Egypt. Samples were processed for detection of Acanthamoeba species using non-nutrient agar (NNA) and were incubated at 30oC. The isolates of Acanthamoeba were identified to species level based on the morphologic criteria. Molecular characterization of the Acanthamoeba isolates to genus level was performed by using PCR. The obtained results showed that the highest occurrence percentage of Acanthamoeba species in water samples was observed in summer season (38.9%), then it decreased to be 30.6% in spring and 25% in each of autumn and winter. PCR analysis showed that 100% of 43 Acanthamoeba morphologically positive samples were positive by genus specific primer. In the present study eight species of Acanthamoeba can be morphologically recognized namely Acanthamoeba triangularis, Acanthamoeba echinulata, Acanthamoeba astronyxis, Acanthamoeba comandoni, Acanthamoeba griffini, Acanthamoeba culbertsoni, Acanthamoeba quina and Acanthamoeba lenticulata. In conclusion, the most common Acanthamoeba species in tap water was Acanthamoeba comandoni


Genetics ◽  
2000 ◽  
Vol 154 (1) ◽  
pp. 121-132
Author(s):  
Zhen Hu ◽  
Yingzi Yue ◽  
Hua Jiang ◽  
Bin Zhang ◽  
Peter W Sherwood ◽  
...  

Abstract Expression of the MAL genes required for maltose fermentation in Saccharomyces cerevisiae is induced by maltose and repressed by glucose. Maltose-inducible regulation requires maltose permease and the MAL-activator protein, a DNA-binding transcription factor encoded by MAL63 and its homologues at the other MAL loci. Previously, we showed that the Mig1 repressor mediates glucose repression of MAL gene expression. Glucose also blocks MAL-activator-mediated maltose induction through a Mig1p-independent mechanism that we refer to as glucose inhibition. Here we report the characterization of this process. Our results indicate that glucose inhibition is also Mig2p independent. Moreover, we show that neither overexpression of the MAL-activator nor elimination of inducer exclusion is sufficient to relieve glucose inhibition, suggesting that glucose acts to inhibit induction by affecting maltose sensing and/or signaling. The glucose inhibition pathway requires HXK2, REG1, and GSF1 and appears to overlap upstream with the glucose repression pathway. The likely target of glucose inhibition is Snf1 protein kinase. Evidence is presented indicating that, in addition to its role in the inactivation of Mig1p, Snf1p is required post-transcriptionally for the synthesis of maltose permease whose function is essential for maltose induction.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 116
Author(s):  
Qi Liu ◽  
Yongjin Li

In this paper, we will introduce a new geometric constant LYJ(λ,μ,X) based on an equivalent characterization of inner product space, which was proposed by Moslehian and Rassias. We first discuss some equivalent forms of the proposed constant. Next, a characterization of uniformly non-square is given. Moreover, some sufficient conditions which imply weak normal structure are presented. Finally, we obtain some relationship between the other well-known geometric constants and LYJ(λ,μ,X). Also, this new coefficient is computed for X being concrete space.


BMC Zoology ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Ansa E. Cobham ◽  
Christen K. Mirth

Abstract Background Organisms show an incredibly diverse array of body and organ shapes that are both unique to their taxon and important for adapting to their environment. Achieving these specific shapes involves coordinating the many processes that transform single cells into complex organs, and regulating their growth so that they can function within a fully-formed body. Main text Conceptually, body and organ shape can be separated in two categories, although in practice these categories need not be mutually exclusive. Body shape results from the extent to which organs, or parts of organs, grow relative to each other. The patterns of relative organ size are characterized using allometry. Organ shape, on the other hand, is defined as the geometric features of an organ’s component parts excluding its size. Characterization of organ shape is frequently described by the relative position of homologous features, known as landmarks, distributed throughout the organ. These descriptions fall into the domain of geometric morphometrics. Conclusion In this review, we discuss the methods of characterizing body and organ shape, the developmental programs thought to underlie each, highlight when and how the mechanisms regulating body and organ shape might overlap, and provide our perspective on future avenues of research.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Peixian Bai ◽  
Liyuan Wang ◽  
Kang Wei ◽  
Li Ruan ◽  
Liyun Wu ◽  
...  

Abstract Background Alanine decarboxylase (AlaDC), specifically present in tea plants, is crucial for theanine biosynthesis. Serine decarboxylase (SDC), found in many plants, is a protein most closely related to AlaDC. To investigate whether the new gene AlaDC originate from gene SDC and to determine the biochemical properties of the two proteins from Camellia sinensis, the sequences of CsAlaDC and CsSDC were analyzed and the two proteins were over-expressed, purified, and characterized. Results The results showed that exon-intron structures of AlaDC and SDC were quite similar and the protein sequences, encoded by the two genes, shared a high similarity of 85.1%, revealing that new gene AlaDC originated from SDC by gene duplication. CsAlaDC and CsSDC catalyzed the decarboxylation of alanine and serine, respectively. CsAlaDC and CsSDC exhibited the optimal activities at 45 °C (pH 8.0) and 40 °C (pH 7.0), respectively. CsAlaDC was stable under 30 °C (pH 7.0) and CsSDC was stable under 40 °C (pH 6.0–8.0). The activities of the two enzymes were greatly enhanced by the presence of pyridoxal-5′-phosphate. The specific activity of CsSDC (30,488 IU/mg) was 8.8-fold higher than that of CsAlaDC (3467 IU/mg). Conclusions Comparing to CsAlaDC, its ancestral enzyme CsSDC exhibited a higher specific activity and a better thermal and pH stability, indicating that CsSDC acquired the optimized function after a longer evolutionary period. The biochemical properties of CsAlaDC might offer reference for theanine industrial production.


Sign in / Sign up

Export Citation Format

Share Document