Kinetics of chloride substitution in [Pt(bpma)Cl]+ and [Pt(gly-met-S,N,N)Cl] complexes by thiourea, nitrites, and iodides

2014 ◽  
Vol 68 (1) ◽  
Author(s):  
Adrian Topolski ◽  
Živadin Bugarčić

AbstractSubstitution of chloride in [PtCl(bpma)]+ and [PtCl(gly-met-S,N,N)], where bpma is bis(2-pyridylmethyl)amine and gly-met-S,N,N is glycyl-l-methionine, was studied as a function of the entering nucleophile concentration and temperature. Reactions between the platinum(II) complexes and thiourea (TU), iodides (I−), and nitrites(III) (NO2−) were carried out in aqueous solutions using conventional UV-VIS spectrophotometry. Suitable ionic conditions were reached by an addition of 0.1 M NaClO4 and 0.01 M NaCl (to suppress hydrolysis). The second-order rate constants, k 2, for the studied reactions with NO2− varied between 0.036–0.038 M−1 s−1, and for the reactions with TU between 0.095–1.06 M−1 s−1, respectively. The reaction between TU and the [PtCl(bpma)]+ ion is ten times faster than that of the [PtCl(gly-met-S,N,N)] complex. An analysis of the activation parameters, ΔH ≠ and ΔS ≠, for the selected reactions clearly shows their associative nature.

Author(s):  
Aigul A. Maksyutova ◽  
Elvina R. Khaynasova ◽  
Yuriy S. Zimin

The ultraviolet spectroscopy method has been applied to study the kinetics of the ozone reactions with nitrogenous bases (NB), namely adenine and cytosine in aqueous solutions. At the first research stage, the range of NB working concentrations has been determined. It was found that linear dependences between optical densities and concentrations of nitrogenous bases aqueous solutions are quite reliable, with correlation coefficients r ≥ 0.998, are satisfied up to [NB] = 2.3 ∙ 10–4 mol/l. According to the Bouguer-Lambert-Beer law, adenine and cytosine extinction coefficients in aqueous solutions were determined and subsequently used to calculate their residual concentrations. At the next stage, the kinetics of nitrogenous bases ozonized oxidation was studied with equal initial concentrations of the starting substances ([NB]0 = [О3]0). The results revealed that the kinetic consumption curves of the starting reagents are fairly well linearized (r ≥ 0.996) in the second-order reaction equation coordinates. As found with the bubbling installation, 1 mol of the absorbed ozone falls on 1 mol of the used NB. Thus, the reactions of ozone with adenine and cytosine explicitly proceed according to the second-order kinetic laws (the first – according to О3 and the first – according to NB). The rate constants were calculated by the integral reaction equations, the values of which indicate a higher ozone reactivity in relation to nitrogen bases. The temperature dependences of the second-order rate constants was studied ranging 285-309 K, and the activation parameters (pre-exponential factors and activation energies) of the ozone reactions with adenine and cytosine in aqueous solutions were determined.


1971 ◽  
Vol 26 (1) ◽  
pp. 43-46 ◽  
Author(s):  
Hans-Gerhard Löffler ◽  
Friedhelm Schneider ◽  
Helmut Wenck

The pH-dependence of the second order rate constants of the reaction of papain with bromoacetamide in the pH-range 5,5-8,5 is described by a curve with a turning point corresponding to a pK 7,3 ± 0,1 at 25°. This is the pK of a catalytically essential imidazole residue. The activation parameters of the reaction of papain with bromoacetamide were determined. The second order rate constants at pH 7 for the reaction is 200 times greater than for the reaction of bromoacetamide with simple SH-compounds.


1999 ◽  
Vol 64 (11) ◽  
pp. 1770-1779 ◽  
Author(s):  
Herbert Mayr ◽  
Karl-Heinz Müller

The kinetics of the electrophilic additions of four diarylcarbenium ions (4a-4d) to tricarbonyl(η4-cyclohepta-1,3,5-triene)iron (1) have been studied photometrically. The second-order rate constants match the linear Gibbs energy relationship log k20 °C = s(E + N) and yield the nucleophilicity parameter N(1) = 3.69. It is concluded that electrophiles with E ≥ -9 will react with complex 1 at ambient temperature.


1994 ◽  
Vol 30 (3) ◽  
pp. 53-61 ◽  
Author(s):  
Harro M. Heilmann ◽  
Michael K. Stenstrom ◽  
Rolf P. X. Hesselmann ◽  
Udo Wiesmann

In order to get basic data for the design of a novel treatment scheme for high explosives we investigated the kinetics for the aqueous alkaline hydrolysis of 1,3,5,7-tetraaza-1,3,5,7-tetranitrocyclooctane (HMX) and the temperature dependence of the rate constants. We used an HPLC procedure for the analysis of HMX. All experimental data could be fit accurately to a pseudo first-order rate equation and subsequent calculation of second-order rate constants was also precise. Temperature dependence could be modeled with the Arrhenius equation. An increase of 10°C led to an average increase in the second-order rate constants by the 3.16 fold. The activation energy of the second-order reaction was determined to be 111.9 ±0.76 kJ·moJ‒1. We found the alkaline hydrolysis to be rapid (less than 2.5% of the initial HMX-concentration left after 100 minutes) at base concentrations of 23 mmol oH‒/L and elevated temperatures between 60 and 80°C.


1973 ◽  
Vol 26 (6) ◽  
pp. 1235 ◽  
Author(s):  
SC Chan ◽  
SF Chan

The second-order rate constants for the thallium(III)-induced aquation of cis-[Co(en)2(RNH2)Cl]2+ cations, where R is H, Me, Et, Prn, and Pri, have been measured in aqueous solution over a range of temperatures, and the activation parameters calculated. The kinetic results are discussed in terms of a rapid pre-equilibrium formation of an activated complex Co-Cl-Tl, followed by a simple rate-determining aquation in which TlCl2+ acts as the leaving group, although the alternative possibility of a rate-determining attack by Tl3+ cannot be excluded. In the case of R = H, the investigations have been extended to the corresponding bromo cation which reacts some 50 times faster than its chloro analogue.


1979 ◽  
Vol 177 (2) ◽  
pp. 641-648 ◽  
Author(s):  
A I Al-Ayash ◽  
M T Wilson

The reduction of single-site haem and copper redox proteins by ascorbic acid was studied as a function of pH. Evidence is presented that indicates that the double-deprotonated ascorbate anion, ascorbate2-, is the reducing agent, and the pH-independent second-order rate constants for reduction by this species are given. Investigation of the temperature dependences of these rate constants have yielded the values of the activation parameters (delta H++ and delta S++) for reduction. These values, together with ligand-replacement studies, suggest that ascorbate2- acts as an outer-sphere reductant for these proteins. Reasons to account for the apparent inability of ascorbic acid to reduce the alkaline conformer of mammalian ferricytochrome c are suggested.


1994 ◽  
Vol 72 (11) ◽  
pp. 2348-2350 ◽  
Author(s):  
Nick Henry Werstiuk ◽  
Chandra Deo Roy

The kinetics of NaOD-catalysed H/D exchange of 3,3,5,5-tetramethylcyclohexanone (1), 1-hydroxy-4-oxo-2,2,6,6-tetrame-thylpiperidine (2), 4-oxo-2,2,6,6-tetramethylpiperidine-1-oxyl (3), 9-hydroxynorpseudopelletierine (4), and norpseudopelle-tierine-9-oxyl (5) have been studied in 60:40 dioxane–D2O(v/v) at 25.0 °C. The second-order rate constants are 9.20 × 10−3, 6.39 × 10−2, 1.59, 2.20 × 10−2, and 5.67 × 10−1 L mol−1 s−1 for 1, 2, 3, 4, and 5, respectively. Gas-phase enthalpies of ionization (the values are 363.0, 359.4, 352.0, 360.7, and 354.1 kcal mol−1 for 1, 2, 3, 4, and 5, respectively) calculated with AM1 correlate with the relative rates of enolization. Thus replacement of the β-hydroxylamino groups of 2 and 4 with a nitroxyl group produces sizable increases in the kinetic and thermodynamic acidities of the hydrogens α to the carbonyl group.


2005 ◽  
Vol 58 (7) ◽  
pp. 544 ◽  
Author(s):  
Biljana V. Petrović ◽  
Živadin D. Bugarčić

The reactions of [Pd(dien)H2O]2+ and [Pt(dien)H2O]2+ (dien = diethylenetriamine or 1,5-diamino-3-azapentane) with l-cysteine and S-methyl-l-cysteine were studied in an aqueous 0.10 M NaClO4 solution using stopped-flow and conventional UV-vis spectrophotometry. The second-order rate constants for the reactions of [Pd(dien)H2O]2+ at pH 1.0 are k1298 = (9.11 ± 0.11) × 102 M−1 s−1 for l-cysteine, and k1298 = (33.79 ± 0.63) × 102 M−1 s−1 for S-methyl-l-cysteine. The second-order rate constants for the reactions of [Pt(dien)H2O]2+ at pH 1.0 with l-cysteine is k1298 = (1.28 ± 0.08) × 10−2 M−1 s−1 and for S-methyl-l-cysteine is k1298 = (3.87 ± 0.02) × 10−2 M−1 s−1. Activation parameters were determined for all reactions, and the negative values of entropy of activation support an associative complex formation mechanism. Substitution reactions were also studied at pH 0.5, 1.0, and 1.5. The rate constants increase with increase in pH. These results are discussed in terms of protolitic equilibrium.


1970 ◽  
Vol 48 (19) ◽  
pp. 3104-3107 ◽  
Author(s):  
James Leslie

The kinetics of the oxidation of 2-mercaptoethanol, 2-mercaptoethylamine, and glutathione with 1,3-dihydro-1-hydroxy-3-oxo-1,2-benziodoxole (1) have been examined at pH 4–5.6. The reaction is second-order, which can be explained by a rate-determining step involving the reaction of one molecule of the thiol with one molecule of 1. The second-order rate constants vary in a linear manner with the reciprocal of the hydrogen ion activity. The ionic species involved in the reaction are discussed.


Sign in / Sign up

Export Citation Format

Share Document