Uniform illumination by diffractive shaping of independent light beams

2011 ◽  
Vol 19 (2) ◽  
Author(s):  
A. Sobczyk ◽  
M. Sypek ◽  
Ag. Siemion ◽  
M. Makowski ◽  
A. Siemion ◽  
...  

AbstractThis article presents a new optical set-up for illumination of a common area with a few independent light sources. The main aim is to create a uniform light distribution of a constant shape even if one of the light sources will stop working. In such a case, the shape of the light distribution should remain unchanged, however, the total light intensity will be lower. The novelty of the proposed solution is based on the usage of a small number of the independent light sources in opposite to a well known LED arrays approach. The beam shaping is made using Dammann gratings and specially designed blazed phase diffractive gratings. The article contains the theoretical analysis and the computer simulation verified by the experiment.

2020 ◽  
pp. 106-112
Author(s):  
Sergei V. Prytkov ◽  
Alexei V. Syromyasov

The article reviews calculation of total light distribution of several light sources (LS), which are differently oriented in space with their locations conventionally 1 being the same. It is proposed that luminous intensity curves (photometric body) of LSs are described in IESNA format (or in the format of tables, which is basically the same). Two methods of solving the problem are proposed. The first one is related to preliminary trigonometric interpolation of luminous intensity curves for each LS performed by means of discrete Fourier transformation (DFT). The second one is based on piecewise-linear interpolation of this curves using Delaunay triangulation. Both methods may be implemented by means of popular mathematic software (such as Wolfram Mathematica or Octave) and their applicability is confirmed experimentally.


2018 ◽  
pp. 27-32
Author(s):  
P. Neyezhmakov ◽  
E. Tymofeiev ◽  
О. Lyashenko

The accuracy of the measurement of the main photometric characteristic of the emitter determines the error for determining the total light flux of the light sources, especially light emitting diodes, for which it should not exceed 5 per cent. Existing measurement methods with the use of integrated spheres, goniophotometers and goniophotometers of the near field require a great deal of time and have a great deal of value. To eliminate these shortcomings, a method for measuring the characteristics of light sources with directed light distribution is proposed based on the use of a set of meters located in a plane perpendicular to the main direction of the source radiation propagation. On the basis of this method, a photometer for measuring the characteristics of the directional light sources is developed, which allows to quickly, in real time, determine the characteristics of the emitters. The method of determining the parameters of light distribution of directed sources of light for the construction of its photometric body is not required to use a rotary means. Taking into account the significant influence of temperature fluctuations on the characteristics of LED light sources, it is possible will upgrade the proposed method for determining the photometric body of the radiation source in real time and when the temperature changes due to the introduction of additional elements in the future.


2021 ◽  
Vol 11 (9) ◽  
pp. 4035
Author(s):  
Jinsheon Kim ◽  
Jeungmo Kang ◽  
Woojin Jang

In the case of light-emitting diode (LED) seaport luminaires, they should be designed in consideration of glare, average illuminance, and overall uniformity. Although it is possible to implement light distribution through auxiliary devices such as reflectors, it means increasing the weight and size of the luminaire, which reduces the feasibility. Considering the special environment of seaport luminaires, which are installed at a height of 30 m or more, it is necessary to reduce the weight of the device, facilitate replacement, and secure a light source with a long life. In this paper, an optimized lens design was investigated to provide uniform light distribution to meet the requirement in the seaport lighting application. Four types of lens were designed and fabricated to verify the uniform light distribution requirement for the seaport lighting application. Using numerical analysis, we optimized the lens that provides the required minimum overall uniformity for the seaport lighting application. A theoretical analysis for the heatsink structure and shape were conducted to reduce the heat from the high-power LED light sources up to 250 W. As a result of these analyses on the heat dissipation characteristics of the high-power LED light source used in the LED seaport luminaire, the heatsink with hexagonal-shape fins shows the best heat dissipation effect. Finally, a prototype LED seaport luminaire with an optimized lens and heat sink was fabricated and tested in a real seaport environment. The light distribution characteristics of this prototype LED seaport luminaire were compared with a commercial high-pressure sodium luminaire and metal halide luminaire.


2018 ◽  
Vol 7 (2.13) ◽  
pp. 252
Author(s):  
Albert Ashryatov ◽  
Dinara Churakova

The article presents one of the possible options for implementing the lighting technology "Flat beam" for landscape lighting purposes. One of the possible ways to control the light distribution of a number of light sources based on LEDs with different radiation patterns is considered. As a secondary optics, it is proposed to use a mirror surface that redistributes the light flux of an LED light source. It is indicated that, depending on the initial type of the light-emitting diodes light curve and the features of mounting the mirror surface, the resulting light distribution can vary widely, depending on the initial task that the designer sets for himself.  


2015 ◽  
Vol 35 (8) ◽  
pp. 0805001
Author(s):  
张巍 Zhang Wei ◽  
梁传样 Liang Chuanyang ◽  
李金 Li Jin ◽  
芮大为 Rui Dawei

2016 ◽  
Vol 53 (6) ◽  
pp. 062201 ◽  
Author(s):  
万运佳 Wan Yunjia ◽  
刘杰 Liu Jie ◽  
林浩博 Lin Haobo ◽  
熊晖 Xiong Hui

2019 ◽  
Vol 215 ◽  
pp. 01001
Author(s):  
Raoul Kirner ◽  
Wilfried Noell ◽  
Toralf Scharf ◽  
Reinhard Voelkel

The application of laser light sources for illumination tasks like in mask aligner lithography relies on non-imaging optical systems with multi-aperture elements for beam shaping. When simulating such systems, the traditional approach is to separate the beam-shaping part (incoherent simulation) from dealing with coherence properties of the illuminating laser light source (diffraction theory with statistical treatment). We present an approach using Gaussian beam decomposition to include coherence simulation into ray tracing, combining these two parts, to get a complete picture in one simulation. We discuss source definition for such simulations, and verify our assumptions on a well-known system. We then apply our approach to an imaging beam shaping setup with microoptical multi-aperture elements. We compare the simulation to measurements of a similar beam-shaping setup with a 193 nm continuous-wave laser in a mask-aligner configuration.


Author(s):  
Yao Alvarez Kossonou ◽  
Jérémie Zoueu

In this paper, we present the progress made in developing multimodal and multispectral light microscopy for label-free malaria diagnosis. Our previously developed light emitting diode (LED) illumination system was replaced by laser diodes as light sources in order to narrow the spectral bands and improve the effectiveness of the contrast function for infected blood cell detection. The acquisition system is now equipped with an algorithm for automatic field scanning and best in-focus determination. We demonstrate the potential of this platform to provide multiple investigation modalities like transmission, reflection, scattering, fluorescence, excitation, emission and polarisation. The application of this platform on malaria-infected samples has shown the effectiveness of such a system in label-free and all-optical malaria detection by allowing the possibility of using a different type of imaging set-up for the samples analysed. Also, fewer illumination sources are used to characterise malaria-infected red blood cells compared to our previous works on malaria detection using LEDs illumination sources.


2010 ◽  
Vol 25 (supp01) ◽  
pp. 189-200
Author(s):  
E. CHIADRONI ◽  
M. CASTELLANO ◽  
A. CIANCHI ◽  
K. HONKAVAARA ◽  
G. KUBE

The characterization of the transverse phase space for high charge density and high energy electron beams is demanding for the successful development of the next generation light sources and linear colliders. Due to its non-invasive and non-intercepting features, Optical Diffraction Radiation (ODR) is considered as one of the most promising candidates to measure the transverse beam size and angular divergence. The recent results of our experiment, based on the detection of the ODR angular distribution to measure the electron beam transverse parameters and set up at FLASH (DESY), are presented. A thin stainless steel mask has been installed at 45° with respect to the DR target and normally to the beam propagation to reduce the contribution of synchrotron radiation (SR) background. In addition, interference between the ODR emitted on the shielding mask in the forward direction and the radiation from the DR target in the backward direction is observed. This is what we call Optical Diffraction Interferometry (ODRI). The contribution of this interference effect to the ODR angular distribution pattern and, consequently, its impact on the beam transverse parameters is discussed.


Sign in / Sign up

Export Citation Format

Share Document