Application of measure of noncompactness to a Cauchy problem for fractional differential equations in Banach spaces

Author(s):  
Asadollah Aghajani ◽  
Ehsan Pourhadi ◽  
Juan Trujillo

AbstractThis paper is devoted to study the existence of solutions of a Cauchy type problem for a nonlinear fractional differential equation, via the techniques of measure of noncompactness. The investigation is based on a new fixed point result which is a generalization of the well known Darbo’s fixed point theorem. The main result is less restrictive than those given in the literature. Some illustrative examples are given.

2019 ◽  
Vol 26 (1/2) ◽  
pp. 107-125 ◽  
Author(s):  
Sabri T.M. Thabet ◽  
Bashir Ahmad ◽  
Ravi P. Agarwal

In this paper, we study a Cauchy-type problem for Hilfer fractional integrodifferential equations with boundary conditions. The existence of solutions for the given problem is proved by applying measure of noncompactness technique in an abstract weighted space. Moreover, we use generalized Gronwall inequality with singularity to establish continuous dependence and uniqueness of ϵ-approximate solutions.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Alka Chadha ◽  
Dwijendra N. Pandey

We study the existence of solutions of impulsive semilinear differential equation in a Banach space X in which impulsive condition is not instantaneous. We establish the existence of a mild solution by using the Hausdorff measure of noncompactness and a fixed point theorem for the convex power condensing operator.


2019 ◽  
Vol 13 (4) ◽  
pp. 407-413
Author(s):  
A. Raheem ◽  
M. Kumar

Abstract This article deals with a fractional differential equation with a deviated argument defined on a nondense set. A fixed-point theorem and the concept of measure of noncompactness are used to prove the existence of a mild solution. Furthermore, by using the compactness of associated cosine family, we proved that system is approximately controllable and obtains an optimal control which minimizes the performance index. To illustrate the abstract result, we included an example.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Jun-Rui Yue ◽  
Jian-Ping Sun ◽  
Shuqin Zhang

We consider the following boundary value problem of nonlinear fractional differential equation:(CD0+αu)(t)=f(t,u(t)),  t∈[0,1],  u(0)=0,   u′(0)+u′′(0)=0,  u′(1)+u′′(1)=0, whereα∈(2,3]is a real number, CD0+αdenotes the standard Caputo fractional derivative, andf:[0,1]×[0,+∞)→[0,+∞)is continuous. By using the well-known Guo-Krasnoselskii fixed point theorem, we obtain the existence of at least one positive solution for the above problem.


Author(s):  
Gonzalo García

AbstractIn this paper we study the existence of solutions for an initial value problem, posed in a given Banach space, with a fractional differential equation via densifiability techniques. For our goal, we will prove a new fixed point result (not based on measures of noncompactness) which is, in forms, a generalization of the well-known Darbo’s fixed point theorem but essentially different. Some illustrative examples are given.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Yongqing Wang ◽  
Lishan Liu ◽  
Yonghong Wu

We discuss the existence of positive solutions of a boundary value problem of nonlinear fractional differential equation with changing sign nonlinearity. We first derive some properties of the associated Green function and then obtain some results on the existence of positive solutions by means of the Krasnoselskii's fixed point theorem in a cone.


2020 ◽  
Vol 36 (3) ◽  
pp. 453-462
Author(s):  
RODICA LUCA

We investigate the existence of solutions for a Riemann-Liouville fractional differential equation with a nonlinearity dependent of fractional integrals, subject to nonlocal boundary conditions which contain various fractional derivatives and Riemann-Stieltjes integrals. In the proof of our main results we use different fixed point theorems.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1937
Author(s):  
Abdellatif ‬Boutiara ◽  
Mohammed S. ‬Abdo ◽  
Mohammed A. ‬Almalahi ◽  
Hijaz Ahmad ◽  
Amira Ishan

This research paper is dedicated to the study of a class of boundary value problems for a nonlinear, implicit, hybrid, fractional, differential equation, supplemented with boundary conditions involving general fractional derivatives, known as the ϑ-Hilfer and ϑ-Riemann–Liouville fractional operators. The existence of solutions to the mentioned problem is obtained by some auxiliary conditions and applied Dhage’s fixed point theorem on Banach algebras. The considered problem covers some symmetry cases, with respect to a ϑ function. Moreover, we present a pertinent example to corroborate the reported results.


Author(s):  
Mohammed A. Almalahi ◽  
Satish K. Panchal

In this paper, we derive the representation formula of the solution for ψ-Hilfer fractional differential equation with constant coefficient in the form of Mittag-Leffler function by using Picard’s successive approximation. Moreover, by using some properties of Mittag-Leffler function and fixed point theorems such as Banach and Schaefer, we introduce new results of some qualitative properties of solution such as existence and uniqueness. The generalized Gronwall inequality lemma is used in analyze Eα -Ulam-Hyers stability. Finally, one example to illustrate the obtained results


2019 ◽  
Vol 13 (05) ◽  
pp. 2050089 ◽  
Author(s):  
S. Nageswara Rao ◽  
Meshari Alesemi

In this paper, we establish sufficient conditions for the existence of positive solutions for a system of nonlinear fractional [Formula: see text]-Laplacian boundary value problems under different combinations of superlinearity and sublinearity of the nonlinearities via the Guo–Krasnosel’skii fixed point theorem. Moreover, an example is given to illustrate our results.


Sign in / Sign up

Export Citation Format

Share Document