scholarly journals Dynamic Modelling and Analyzing of a Walking of Humanoid Robot

2018 ◽  
Vol 68 (3) ◽  
pp. 59-76
Author(s):  
Bajrami Xhevahir ◽  
Shala Ahmet ◽  
Hoxha Gezim ◽  
Likaj Rame

AbstractThis paper focuses on the walking improvement of a biped robot. The zero-moment point (ZMP) method is used to stabilise the walking process of robot. The kinematic model of the humanoid robot is based on Denavit- Hartenberg’s (D-H) method, as presented in this paper. This work deals with the stability analysis of a two-legged robot during double and single foot walking. It seems more difficult to analyse the dynamic behaviour of a walking robot due to its mathematical complexity. In this context most humanoid robots are based on the control model. This method needs to design not only a model of the robot itself but also the surrounding environment. In this paper, a kinematic simulation of the robotic system is performed in MATLAB. Driving torque of the left and right ankle is calculated based on the trajectory of joint angle, the same as angular velocity and angular acceleration. During this process an elmo motion controller is used for all joints. The validity of the dynamic model is tested by comparing obtained results with the simulation results.

Author(s):  
Ahmet Shala ◽  
Rame Likaj ◽  
Xhevahir Bajrami

First, a brief overview is provided on humanoid robots, and also models for the dynamic behavior are discussed. As base for these models these two methods Denavit-Hartenberg and Newton-Euler are used. Main aim of this work is to investigate the stability of a biped robot developed from IHRT. There is currently the low base of robot - consisting of feet, legs, hips and upper part of robots body. This structure currently has ten degrees of freedom.


2021 ◽  
Vol 15 ◽  
Author(s):  
Qiubo Zhong ◽  
Yaoyun Li ◽  
Caiming Zheng ◽  
Tianyao Shen

The implementation of low-energy cooperative movements is one of the key technologies for the complex control of the movements of humanoid robots. A control method based on optimal parameters is adopted to optimize the energy consumption of the cooperative movements of two humanoid robots. A dynamic model that satisfies the cooperative movements is established, and the motion trajectory of two humanoid robots in the process of cooperative manipulation of objects is planned. By adopting the control method with optimal parameters, the parameters optimization of the energy consumption index function is performed and the stability judgment index of the robot in the movement process is satisfied. Finally, the effectiveness of the method is verified by simulations and experimentations.


Author(s):  
Indra Adji Sulistijono ◽  
◽  
Son Kuswadi ◽  
One Setiaji ◽  
Inzar Salfikar ◽  
...  

Instability is one of the major defects in humanoid robots. Recently, various methods on the stability and reliability of humanoid robots have been studied actively. We propose a new fuzzy-logic control scheme for vision systems that would enable a robot to search for and to kick a ball towards an opponent goal. In this paper, a stabilization algorithm is proposed using the balance condition of the robot, which is measured using accelerometer sensors during standing and walking, and turning movement are estimated from these data. From this information the robot selects the appropriate motion pattern effectively. In order to generate the appropriate reaction in various body of robot situations, a fuzzy algorithm is applied in finding the appropriate angle of the joint from the vision system. The performance of the proposed algorithm is verified by searching for a ball, walking, turning tap and ball kicking movement experiments using an 18-DOF humanoid robot, called EFuRIO.


2019 ◽  
Vol 11 (11) ◽  
pp. 168781401988808 ◽  
Author(s):  
Tran Thien Huan ◽  
Ho Pham Huy Anh ◽  
Cao Van Kien

This article proposes a new method used to optimize the design process of nature-walking gait generator that permits biped robot to stably and naturally walk with preset foot-lift magnitude. The new Jaya optimization algorithm is innovatively applied to optimize the biped gait four key parameters initiatively applied to ensure the uncertain nonlinear humanoid robot walks robustly and steadily. The efficiency of the proposed Jaya-based identification approach is compared with the central force optimization and improved differential evolution (modified differential evolution) algorithms. The simulation and experimental results tested on the original small-sized biped robot HUBOT-4 convincingly demonstrate that the novel proposed algorithm offers an efficient and stable gait for humanoid robots with precise height of foot-lift value.


Author(s):  
Joshua Hill ◽  
Farbod Fahimi

A control system for the walking of a redundant biped robot in the swing phase is considered. The biped is a humanoid with 6DOF per leg and 3DOF per arm. The controller will be based on a full kinematic model of the robot to depict a more accurate behavior of the robot. The arms of the robot are used to compensate for disturbances the robot may experience during walking. Instead of controlling the robots ZMP, keeping it within the support polygon, all six foot support reaction components are controlled. First, a “shoe” with force sensors detect the forces and moments on the foot for feedback. The feedback from the joint servos provide position and velocity information. The support reaction and the joint position/velocities are fedback to a sliding mode controller, which makes adjustments to the arm links’ acceleration to compensate the shift in the reaction components. Simulations show the comparison of the ZMP shift when disturbances are applied with and without controlling the reaction forces to prove the effectiveness of the approach.


Author(s):  
Siavash Dezfouli ◽  
Mohsen M. Daniali

This paper addresses design of a motion controller for a teen sized biped robot, Archie. The main goal is to develop a motion controller for a cost oriented robot to assist human in daily life. The proposed real-time controller enables each joint individually to receive reference speed and position to provide a smooth motion. In this scheme, action commands are transmitted via Control Area Network (CAN) bus from a PC to robot. Aim of using such a communicator is to provide error process mechanism with a message priority concept. The main advantage of this method is to synchronize the motion of all joints necessary for biped walking motion. Finally test and implementation results are presented to demonstrate the good performance.


2008 ◽  
Vol 05 (01) ◽  
pp. 87-118 ◽  
Author(s):  
BERTRAND TONDU

Starting from a biomechanical study of the shoulder complex, the relevance of a serial nine d.o.f. kinematic model of the human arm, including a clavicle-like link, was analyzed. It is shown that this partial biomimetic joint model of the upper limb is able to mimic the ability of the natural arm to practically eliminate internal and bound singularities over a large frontal zone, so as to maintain its elbow laterally to the body. In this sense, it appears to be an advanced solution for increasing the dexterity of humanoid robot upper limbs, thus replacing classical seven d.o.f. anthropomorphic arms where a device mimicking the shoulder girdle mechanism is absent.


2014 ◽  
Vol 541-542 ◽  
pp. 1043-1048 ◽  
Author(s):  
Zhe Qiu ◽  
Lei Zhang ◽  
Yang Tian ◽  
Xiao Kai Feng ◽  
Sheng Yuan Zhang

A distributed control system applied to small humanoid robots is designed in this paper, using ARM embedded processor and modular function approaches. The system designs plenty of hardware circuits to promote operability of system and reduce difficulties in development. This design solves the problems of high cost, low scalability, weak autonomy of small humanoid robot control system, providing a reliable experimental platform for further study. The feasibility of this control system will be verified through walking experiment of biped robot.


Author(s):  
Dr. S. V. Viraktamath

Abstract: Technology is ever evolving regardless of the current conditions. Emerging technologies have capability to change the world. Innovation is everywhere we look. One of the technologies that is emerging is Humanoid Robotics. This paper gives a review about influence of Humanoid Robot in human life also discuss the appearance of various robots. Artists, engineers and scientists have all been inspired by the human body and intellect. Humanoid Robotics is focused with the creation of robots that are inspired directly by human abilities. A humanoid robot is the one with a body that is designed to look like a human. Humanoid Robots imitate characteristics of human form and behaviour selectively. The robot could be used for practical purposes, such as interacting with human equipment and environments or for research purposes, such as investigating biped walking. Keywords: Biped Robot, Degrees of Freedom, Humanoid Robot, Human-Robot Interaction


2011 ◽  
Vol 201-203 ◽  
pp. 1978-1982
Author(s):  
Tie Jun Zhao

This research is aimed at dynamically stable motion and safety of mobile humanoid robots expected to work in a human living space. The mechanism of the mobile humanoid robot YIREN is described. A highly flexible anthropomorphic 7-DOF robotic arm and a new waist configuration with parallel driving motor are developed. Because the dynamitic behavior of manipulator and waist has an effect on the stability of mobile humanoid robots, the dynamitic model is built. By using the zero moment point, dynamic effect of the waist is obtained. A basic control method of whole body cooperative dynamic moving is proposed that uses waist cooperative motion to compensate for moment generated by the trajectory of the arms and the correctness of analysis is verified by experiments.


Sign in / Sign up

Export Citation Format

Share Document