Comparative Analysis of Macro- and Microstructure of Printed Elements in the FDM, SLS and MJ Technologies

2019 ◽  
Vol 2019 (4) ◽  
pp. 66-80
Author(s):  
Natalia Majca-Nowak ◽  
Ewelina Kluska ◽  
Piotr Gruda

Abstract The article presents research conducted with the project: ‘Additive manufacturing in conduction with optical methods used for optimization of 3D models’’ [2]. The article begins with the description of properties of the materials used in three different additive technologies – Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS) and Material Jetting (MJ). The next part focuses on the comparative analysis of macro- and microstructure of specimens printed in order to test selected materials in additive technologies mentioned above. In this research two types of specimens were used: dumbbell specimens and rectangular prism with hole specimens. In order to observe macrostructure specimens, they were subjected to load test until it broke. In the case of observing microstructure, they were cut in some places. Each of described additive technologies characterizes by both different way of printing and used materials. These variables have a significant influence on macro- and microstructure and fracture appearance. FDM technology specimens printed of ABS material characterized by texture surface appearance. SLS technology specimens printed of PA12 material characterized by amorphous structure. MJ technology specimens printed of VeroWhite Plus material characterized by fracture appearance which had quasi- fatigue features. The microstructure of these specimens was uniform with visible inclusions.

2018 ◽  
Vol 2018 (3) ◽  
pp. 49-68
Author(s):  
Ewelina Kluska ◽  
Piotr Gruda ◽  
Natalia Majca-Nowak

Abstract Research included in this article were conducted with a project: ‘Additive technology used in conduction with optical methods for rapid prototyping of 3D printed models’. In this article intellectualized three various 3D printing technologies: Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS) and Material Jetting (PolyJet). Also, there was presented theory of Digital Image Correlation (DIC) as an optical method for strain analysis. The limitations of DIC system have been tested and detected. The test result for DIC system were shown for each method of additive technologies and the results were compared to Finite Element Method (FEM). Test specimens were printed in selected technologies for reference. DIC system has been used for displacement state in loaded objects. The last paragraph contains both summary and tests results.


2010 ◽  
Vol 441 ◽  
pp. 155-179 ◽  
Author(s):  
Ulrike Deisinger

For tissue regeneration in medicine three-dimensional scaffolds with specific characteristics are required. A very important property is a high, interconnecting porosity to enable tissue ingrowth into the scaffold. Pore size distribution and pore geometry should be adapted to the respective tissue. Additionally, the scaffolds should have a basic stability for handling during implantation, which is provided by ceramic scaffolds. Various methods to produce such ceramic 3D scaffolds exist. In this paper conventional and new fabrication techniques are reviewed. Conventional methods cover the replica of synthetic and natural templates, the use of sacrificial templates and direct foaming. Rapid prototyping techniques are the new methods listed in this work. They include fused deposition modelling, robocasting and dispense-plotting, ink jet printing, stereolithography, 3D-printing, selective laser sintering/melting and a negative mould technique also involving rapid prototyping. The various fabrication methods are described and the characteristics of the resulting scaffolds are pointed out. Finally, the techniques are compared to find out their disadvantages and advantages.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3101
Author(s):  
Abishek Kafle ◽  
Eric Luis ◽  
Raman Silwal ◽  
Houwen Matthew Pan ◽  
Pratisthit Lal Shrestha ◽  
...  

Additive manufacturing (AM) or 3D printing is a digital manufacturing process and offers virtually limitless opportunities to develop structures/objects by tailoring material composition, processing conditions, and geometry technically at every point in an object. In this review, we present three different early adopted, however, widely used, polymer-based 3D printing processes; fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA) to create polymeric parts. The main aim of this review is to offer a comparative overview by correlating polymer material-process-properties for three different 3D printing techniques. Moreover, the advanced material-process requirements towards 4D printing via these print methods taking an example of magneto-active polymers is covered. Overall, this review highlights different aspects of these printing methods and serves as a guide to select a suitable print material and 3D print technique for the targeted polymeric material-based applications and also discusses the implementation practices towards 4D printing of polymer-based systems with a current state-of-the-art approach.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2682
Author(s):  
Obinna Okolie ◽  
Iwona Stachurek ◽  
Balasubramanian Kandasubramanian ◽  
James Njuguna

There is a rising demand for replacement, regeneration of tissues and organ repairs for patients who suffer from diseased/damaged bones or tissues such as hip pains. The hip replacement treatment relies on the implant, which may not always meet the requirements due to mechanical and biocompatibility issues which in turn may aggravate the pain. To surpass these limitations, researchers are investigating the use of scaffolds as another approach for implants. Three-dimensional (3D) printing offers significant potential as an efficient fabrication technique on personalized organs as it is capable of biomimicking the intricate designs found in nature. In this review, the determining factors for hip replacement and the different fabrication techniques such as direct 3D printing, Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS) and stereolithography (SLA) for hip replacement. The study also covers surface modifications of 3D printed implants and provides an overview on 3D tissue regeneration. To appreciate the current conventional hip replacement practices, the conventional metallic and ceramic materials are covered, highlighting their rationale as the material of choice. Next, the challenges, ethics and trends in the implants’ 3D printing are covered and conclusions drawn. The outlook and challenges are also presented here. The knowledge from this review indicates that 3D printing has enormous potential for providing a pathway for a sustainable hip replacement.


2016 ◽  
Vol 61 (2) ◽  
pp. 891-896 ◽  
Author(s):  
P. Dudek ◽  
A. Rapacz-Kmita

AbstractIn the context of product development, the term rapid prototyping (RP) is widely used to describe technologies which create physical prototypes directly from digital data. Recently, this technology has become one of the fastest-growing methods of manufacturing parts. The paper provides brief notes on the creation of composites using RP methods, such as stereolithography, selective laser sintering or melting, laminated object modelling, fused deposition modelling or three-dimensional printing. The emphasis of this work is on the methodology of composite fabrication and the variety of materials used in these technologies.


Author(s):  
Ю. Б. Витязев ◽  
А. Г. Гребеников ◽  
А. М. Гуменный ◽  
А. М. Ивасенко ◽  
А. А. Соболев

The analysis of the most applicable in mechanical engineering additive technologies (fused deposition modeling, selective laser sintering, laser stereolithography, direct metal laser sintering) have been performed. Method of creating airplane models using CAD/CAM/CAE systems and additive manufacturing is presented. The results of the application of selective laser sintering and fused deposition modeling for the manufacture of training aircraft models are considered.


2021 ◽  
Vol 11 (24) ◽  
pp. 12016
Author(s):  
Michał Karoluk ◽  
Gustaw Koenig ◽  
Tomasz Kurzynowski

A year after the first cases, the COVID-19 pandemic continued to put immense pressure on healthcare systems worldwide. With supply chains broken, the only opportunity for hospitals was to turn to unconventional solutions to overcome medical equipment shortages in the shortest possible time. This paper describes the methodology that allows the preparation of medical equipment to be additionally manufactured in keeping with medical requirements. The proposed method focuses on cytotoxicity tests against HaCaT, L929, A549 cell lines, and the assessment of potential antimicrobial properties of materials. The application of the proposed method is shown by the example of an adapter that connects a full mask with widely available DAR filters. The prototyping and fabrication of adapters were conducted with the fused deposition modelling (FDM) and selective laser sintering (SLS) technologies. The adapters increased the number of masks available to medical personnel, and by the same token, ensured the continuity of their work.


2015 ◽  
Vol 21 (5) ◽  
pp. 535-555 ◽  
Author(s):  
Paolo Minetola ◽  
Luca Iuliano ◽  
Elena Bassoli ◽  
Andrea Gatto

Purpose – The purpose of this paper is to evaluate how the direct access to additive manufacturing (AM) systems impacts on education of future mechanical engineers, within a Master’s program at a top Italian University. Design/methodology/approach – A survey is specifically designed to assess the relevance of entry-level AM within the learning environment, as a tool for project development. The survey is distributed anonymously to three consecutive cohorts of students who attended the course of “computer-aided production (CAP)”, within the Master of Science Degree in Mechanical Engineering at Politecnico di Torino. The course includes a practical project, consisting in the design of a polymeric product with multiple components and ending with the production of an assembled prototype. The working assembly is fabricated by the students themselves, who operate a fused deposition modelling (FDM) machine, finish the parts and evaluate assemblability and functionality. The post-course survey covers diverse aspects of the learning process, such as: motivation, knowledge acquisition, new abilities and team-working skills. Responses are analyzed to evaluate students’ perception of the usefulness of additive technologies in learning product design and development. Among the projects, one representative case study is selected and discussed. Findings – Results of the research affirm a positive relationship of access to AM devices to perceived interest, motivation and ease of learning of mechanical engineering. Entry-level additive technologies offer a hands-on experience within academia, fostering the acquisition of technical knowledge. Research limitations/implications – The survey is distributed to more than 200 students to cover the full population of the CAP course over three academic years. The year the students participated in the CAP course is not tracked because the instructor was the same and there were no administrative differences. For this reason, the survey administration might be a limitation of the current study. In addition to this, no gender distinction is made because historically, the percentage of female students in Mechanical Engineering courses is about 10 per cent or lower. Although the answers to the survey are anonymous, only 37 per cent of the students gave a feedback. Thus, on the one hand, impact assessment is limited to a sample of about one-third of the complete population, but, on the other hand, the anonymity ensures randomization in the sample selection. Practical implications – Early exposure of forthcoming designers to AM tools can turn into a “think-additive” approach to product design, that is a groundbreaking conception of geometries and product functionalities, leading to the full exploitation of the possibilities offered by additive technologies. Social implications – Shared knowledge can act as a springboard for mass adoption of AM processes. Originality/value – The advantages of adopting AM technologies at different levels of education, for diverse educational purposes and disciplines, are well assessed in the literature. The innovative aspect of this paper is that the impact of AM is evaluated through a feedback coming directly from mechanical engineering students.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 295 ◽  
Author(s):  
Jorge Barrios-Muriel ◽  
Francisco Romero-Sánchez ◽  
Francisco Javier Alonso-Sánchez ◽  
David Rodríguez Salgado

In this work, the recent advances for rapid prototyping in the orthoprosthetic industry are presented. Specifically, the manufacturing process of orthoprosthetic aids are analysed, as thier use is widely extended in orthopedic surgery. These devices are devoted to either correct posture or movement (orthosis) or to substitute a body segment (prosthesis) while maintaining functionality. The manufacturing process is traditionally mainly hand-crafted: The subject’s morphology is taken by means of plaster molds, and the manufacture is performed individually, by adjusting the prototype over the subject. This industry has incorporated computer aided design (CAD), computed aided engineering (CAE) and computed aided manufacturing (CAM) tools; however, the true revolution is the result of the application of rapid prototyping technologies (RPT). Techniques such as fused deposition modelling (FDM), selective laser sintering (SLS), laminated object manufacturing (LOM), and 3D printing (3DP) are some examples of the available methodologies in the manufacturing industry that, step by step, are being included in the rehabilitation engineering market—an engineering field with growth and prospects in the coming years. In this work we analyse different methodologies for additive manufacturing along with the principal methods for collecting 3D body shapes and their application in the manufacturing of functional devices for rehabilitation purposes such as splints, ankle-foot orthoses, or arm prostheses.


Sign in / Sign up

Export Citation Format

Share Document