scholarly journals Ash From Thermal Power Plants as Secondary Raw Material

2007 ◽  
Vol 58 (2) ◽  
pp. 233-238 ◽  
Author(s):  
Vladica Čudić ◽  
Dragica Kisić ◽  
Dragoslava Stojiljković ◽  
Aleksandar Jovović

Ash From Thermal Power Plants as Secondary Raw MaterialThe basic characteristic of thermal power plants in the Republic of Serbia is that they use low-grade brown coal (lignite) as a fuel. Depending on the location of coal mines, lignite may have different properties such as heating value, moisture, and mineral content, resulting in different residue upon combustion. Because of several million tonnes of ash and slag generated every year, their granularmetric particle size distribution, and transport and disposal methods, these plants have a negative impact on the environment. According to the waste classification system in the Republic of Serbia, ash and slag from thermal power plants are classified as hazardous waste, but with an option of usability. The proposed revision of waste legislation in Serbia brings a number of simple and modern solutions. A procedure is introduced which allows for end-of-waste criteria to be set, clarifying the point where waste ceases to be waste, and thereby introducing regulatory relief for recycled products or materials that represent low risk for the environment. The new proposal refocuses waste legislation on the environmental impacts of the generation and management of waste, taking into account the life cycle of resources, and develops new waste prevention programmes. Stakeholders, as well as the general public, should have the opportunity to participate in the drawing up of the programmes, and should have access to them.

2014 ◽  
Vol 897 ◽  
pp. 53-56 ◽  
Author(s):  
Dominik Gazdič

The territory of our country is very poor in natural resources of gypsum and the natural resource of anhydrite is missing completely. A considerable amount of gypsum is produced in the country as a secondary raw material originating during the desulphurization of flue gases in thermal power plants using limestone washing and in the chemical industry. This paper describes the different types of industrially generated gypsum, the production technology, and its potential use in the construction industry.


Author(s):  
V. Dhivakhar ◽  
Maju Varghese ◽  
Keerthi M. S. ◽  
S. Kaviya

About 40% of the Global Electricity produced is fuelled by coal. Although Coal has various advantages like good High Heating Value, easy availability etc., it also has various disadvantages. Green House Gas Released from Coal Thermal Power Plants is the single major contributor to Global warming. Coal is also nonrenewable. Hence it is important to analyze the viability of potential alternatives and reduce the usage of coal. In this assessment, various potential replacements of coal have been analyzed based on their High heating value (HHV) and their Global Warming Potential. The Global warming Potential (GWP) of the assessed fuels have been calculated by the Respiratory Quotient (RQ) Factor method. Hence a direct comparison between Coal and other replacements based on their HHV and GWP has been performed.


Author(s):  
Suchismita Satapathy

All companies are dependent on their raw material providers. The same applies in the case of thermal power plants. The major raw material for a thermal power plant is the coal. There are a lot of companies which in turn provide this coal to the thermal power plant. Some of these companies are international; some are local, whereas the others are localized. The thermal power plants look into all the aspects of the coal providing company, before settling down for a deal. Some people are specifically assigned to the task of managing the supply chain. The main motive is to optimize the whole process and achieve higher efficiency. There are a lot of things which a thermal power plant looks into before finalizing a deal, such as the price, quality of goods, etc. Thus, it is very important for the raw material providers to understand each and every aspect of the demands of the thermal power plant. A combination of three methods—Delphi, SWARA, and modified SWARA—has been applied to a list of factors, which has later been ranked according to the weight and other relevant calculations.


2019 ◽  
Vol 124 ◽  
pp. 01040 ◽  
Author(s):  
D. T. Nguen ◽  
D. N. Pham ◽  
G. R. Mingaleeva ◽  
O. V. Afanaseva ◽  
P. Zunino

The growing demand for energy and fossil fuels creates increased number of difficulties, while renewable energy sources are still rarely used worldwide, particularly in Vietnam. In this article hybrid thermal power plants based on gas turbine plants are discussed, the increased efficiency of which is achieved by air heating after the compressor in solar air heaters. The basic design equations and the results of evaluating the efficiency and fuel consumption are presented for two thermal power plants of 4.6 MW and 11.8 MW. The dependence of the results on the intensity of solar extraction for the climatic conditions of the Ninh Thuan province of the Republic of Vietnam is discussed.


2016 ◽  
Vol 683 ◽  
pp. 156-161 ◽  
Author(s):  
Viktor A. Vlasov ◽  
Nelli K. Skripnikova ◽  
Ivan Yu. Yuriev ◽  
Pavel V. Kosmachev ◽  
Viktoria A. Litvinova ◽  
...  

The paper focuses on the production of ceramic brick based on aluminum silicate waste generated by thermal power plants. The grain size and chemical compositions of the raw material are investigated. Experimental studies are carried out to identify optimum operating parameters of the ceramic brick production. It is shown that the use of aluminum silicate waste, namely, 40–60 % ash together with clay raw material allows obtaining ceramic brick possessing 20–25 MPa compressive strength, 10–15 % water absorption, and frost resistance of over 60 cycles.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Hui Hong ◽  
Hongguang Jin ◽  
Jun Sui ◽  
Jun Ji

Solar thermochemical processes inherently included the conversion of solar thermal energy into chemical energy. In this paper, a new mechanism of upgrading the energy level of solar thermal energy at around 200°C was revealed based on the second law thermodynamics and was then experimentally proven. An expression was derived to describe the upgrading of the energy level from low-grade solar thermal energy to high-grade chemical energy. The resulting equation explicitly reveals the interrelations of energy levels between middle-temperature solar thermal energy and methanol fuel, and identifies the interactions of mean solar flux and the reactivity of methanol decomposition. The proposed mechanism was experimentally verified by using the fabricated 5kW prototype of the receiver∕reactor. The agreement between the theoretical and the experimental results proves the validity of the mechanism for upgrading the energy level of low-grade solar thermal energy by integrating clean synthetic fuel. Moreover, the application of this new middle-temperature solar∕methanol hybrid thermochemical process into a combined cycle is expected to have a net solar-to-electric efficiency of about 27.8%, which is competitive with other solar-hybrid thermal power plants using high-temperature solar thermal energy. The results obtained here indicate the possibility of utilizing solar thermal energy at around 200°C for electricity generation with high efficiency by upgrading the energy level of solar thermal energy, and provide an enhancement to solar thermal power plants with the development of this low-grade solar thermochemical technology in the near future.


Author(s):  
Michał Jasiulewicz

What is of crucial importance in local conditions as concerns the heat power industry is the use of local biomass, especially waste biomass, as an energy raw material in the existing system of thermal power plants. The purpose of the present study is to assess the possibility of replacing hard coal as an energy raw material with solid biomass. Solid biomass is constituted by: surpluses of cereal straw and rape straw, as well as hay from unused meadows, from the upkeep of roadside trees and from energy crop plantations. The research was conducted on the example of thermal power plants associated in the “Together Warmer” Cluster. This cluster is formed by 10 thermal power plants in small towns in the Warmińsko-Mazurskie Province and the city of Biała Podlaska (Lubelskie Province). All of these are located in north-east Poland. Considering the high transport costs of biomass, a biomass technical potential was accepted within a radius of 30 km from the thermal power plant. The solid biomass potential for each of the ten thermal power plants demonstrates that most of the thermal power plants from the Cluster under examination are able to meet their energy needs with solid biomass from the nearest neighbourhood (replace hard coal). However, when taking a decision on replacing hard coal with local biomass, it is necessary to adequately handle logistics and replace boilers in thermal power plants with special boilers for the combustion of solid biomass.


Author(s):  
Sergey Pukhov ◽  
Svetlana Kiseleva

The article is devoted to the problem of reducing environmental pollution from ash and slag waste and obtaining benefits from their use in the national economy. The main aspects of the negative impact of ash and slag waste on the environment are considered. The use of ash and slag materials in the economy of Russia and foreign countries is characterized. The main problems in the waste management system in the Russian Federation, which impede the wider involvement of waste from thermal power plants in economic circulation, are identified. In the interests of reducing the negative impact of waste from thermal power plants on the environment and their more active involvement in the economic turnover, the most promising directions in this area have been identified. The current trends in the development of ash and slag waste management and the problems in this area are highlighted. The authors proposed to use an integrated approach to the waste management of thermal power plants, which covers various areas of technological activity and takes into account production, economic, environmental and other factors. The article presents a set of factors developed within the framework of the proposed approach that stimulate and hinder the development of projects in the field of waste management of thermal power plants. A set of indicators is proposed for analyzing projects (measures, programs) for the waste management of thermal power plants in the Russian Federation, reflecting commercial, environmental, socio-economic, legal interests. An approach and methodological basis for comparing alternative technologies (projects) for the treatment of waste from thermal power plants and selecting the most efficient are proposed. An algorithm for using an integrated approach to waste management of thermal power plants in the interests of sustainable economic development is proposed. The main provisions and conclusions of the study can be used in the practical activities of the fuel and energy complex, and can also serve as material for training specialists in the field of waste management and ensuring the environmental safety of the fuel and energy complex.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7979
Author(s):  
Mateus Mendes Campos ◽  
Luiz Eduardo Borges-da-Silva ◽  
Daniel de Almeida Arantes ◽  
Carlos Eduardo Teixeira ◽  
Erik Leandro Bonaldi ◽  
...  

This paper presents a ultrasonic-capacitive system for online analysis of the quality of fuel oils (FO), which are widely used to produce electric energy in Thermal Power Plants (TPP) due to their elevated heating value. The heating value, in turn, is linked to the quality of the fuel (i.e., the density and the amount of contaminants, such as water). Therefore, the analysis of the quality is of great importance for TPPs, either in order to avoid a decrease in generated power or in order to avoid damage to the TPP equipment. The proposed system is composed of two main strategies: a capacitive system (in order to estimate the water content in the fuel) and an ultrasonic system (in order to estimate the density). The conjunction of the two strategies is used in order to estimate the heating value of the fuel, online, as it passes through the pipeline and is an important tool for the TPP in order to detect counterfeit fuel. In addition, the ultrasonic system allows the estimation of the flow rate through the pipeline, hence estimating the amount of oil transferred and obtaining the total mass transferred as a feature of the system. Experimental results are provided for both sensors installed in a TPP in Brazil.


Sign in / Sign up

Export Citation Format

Share Document