scholarly journals On domain selection for additive, blind image watermarking

2012 ◽  
Vol 60 (2) ◽  
pp. 317-321 ◽  
Author(s):  
P. Lipiński

Abstract. Recently, a variety of digital watermarking schemes have been developed for copyright protection of digital images. In robust watermarking, which is used in copyright protection, transform-based algorithms are used to ensure resilience of the watermark to common signal processing attacks. The most frequently used watermarking algorithms for additive watermark embedding involve DCT, DFT, SVD and DWT domains. In this article we verify which domain is optimal for robust, the additive watermark embedding scheme. We demonstrate that in additive watermark embedding the embedding domain plays more important role than the embedding formula.

Author(s):  
Dan Yu ◽  
Farook Sattar

This chapter focuses on the issue of transaction tracking in multimedia distribution applications through digital watermarking terminology. The existing watermarking schemes are summarized and their assumptions as well as the limitations for tracking are analyzed. In particular, an Independent Component Analysis (ICA)-based watermarking scheme is proposed, which can overcome the problems of the existing watermarking schemes. Multiple watermarking technique is exploited—one watermark to identify the rightful owner of the work and the other one to identify the legal user of a copy of the work. In the absence of original data, watermark, embedding locations and strengths, the ICA-based watermarking scheme is introduced for efficient watermark extraction with some side information. The robustness of the proposed scheme against some common signal-processing attacks as well as the related future work are also presented. Finally, some challenging issues in multimedia transaction tracking through digital watermarking are discussed.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 266
Author(s):  
Farhana Shirin Chowdhury ◽  
Pranab Kumar Dhar ◽  
Kaushik Deb ◽  
Takeshi Koshiba

Copyright protection of multimedia content is confronted with great challenges such as easy access to the Internet. Digital watermarking is widely applicable technique for copyright protection of multimedia contents. In this paper, a blind symmetric watermarking method in canonical and cepstrum domains based on four-connected t-o’clock scrambling is proposed. Initially, the watermark image is scrambled using the four-connected t-o’clock method to enhance the security. Then, the rotation operation is applied to the host image to extract the region where the watermark bits are embedded. After that, discrete linear canonical transform (DLCT) is applied to the extracted region to obtain the DLCT region. Cepstrum transform (CT) is performed on DLCT region to attain CT region. The CT region is then divided into non-overlapping blocks. The watermark bits are inserted into each block using max-heap and min-heap tree property. Experimental results illustrate that the proposed method shows high robustness against numerous attacks. Moreover, it produces high quality watermarked images and provides high security. Furthermore, it has superior performance to recent methods in terms of imperceptibility, robustness, and security.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Amin Banitalebi-Dehkordi ◽  
Mehdi Banitalebi-Dehkordi ◽  
Jamshid Abouei ◽  
Said Nader-Esfahani

Digital watermarking is extensively used in ownership authentication and copyright protection. In this paper, we propose an efficient thresholding scheme to improve the watermark embedding procedure in an image. For the proposed algorithm, watermark casting is performed separately in each block of an image, and embedding in each block continues until a certain structural similarity threshold is reached. Numerical evaluations demonstrate that our scheme improves the imperceptibility of the watermark when the capacity remains fixed, and at the same time, robustness against attacks is assured. The proposed method is applicable to most image watermarking algorithms. We verify this issue on watermarking schemes in discrete cosine transform (DCT), wavelet, and spatial domain.


2008 ◽  
pp. 770-792
Author(s):  
D. Yu ◽  
Farook Sattar

This chapter focuses on the issue of transaction tracking in multimedia distribution applications through digital watermarking terminology. The existing watermarking schemes are summarized and their assumptions as well as the limitations for tracking are analyzed. In particular, an Independent Component Analysis (ICA)-based watermarking scheme is proposed, which can overcome the problems of the existing watermarking schemes. Multiple watermarking technique is exploited—one watermark to identify the rightful owner of the work and the other one to identify the legal user of a copy of the work. In the absence of original data, watermark, embedding locations and strengths, the ICA-based watermarking scheme is introduced for efficient watermark extraction with some side information. The robustness of the proposed scheme against some common signal-processing attacks as well as the related future work are also presented. Finally, some challenging issues in multimedia transaction tracking through digital watermarking are discussed.


Author(s):  
Dan Yu ◽  
Farook Sattar

This chapter focuses on the issue of transaction tracking in multimedia distribution applications through digital watermarking terminology. The existing watermarking schemes are summarized and their assumptions as well as the limitations for tracking are analyzed. In particular, an Independent Component Analysis (ICA)-based watermarking scheme is proposed, which can overcome the problems of the existing watermarking schemes. Multiple watermarking technique is exploited—one watermark to identify the rightful owner of the work and the other one to identify the legal user of a copy of the work. In the absence of original data, watermark, embedding locations and strengths, the ICA-based watermarking scheme is introduced for efficient watermark extraction with some side information. The robustness of the proposed scheme against some common signal-processing attacks as well as the related future work are also presented. Finally, some challenging issues in multimedia transaction tracking through digital watermarking are discussed.


2013 ◽  
Vol 321-324 ◽  
pp. 2609-2612
Author(s):  
Yan Liang ◽  
Gao Yan ◽  
Chun Xia Qi

Digital watermarking has been proposed as a solution to the problem of copyright protection of multimedia data in a networked environment. It makes possible to tightly associated to a digital document a code allowing the identification of the data creator, owner, authorized consumer, and so on. In this paper a new DCT-domain system for digital watermarking algorithm for digital images is presented: the method, which operates in the frequency domain, embeds a pseudo-random sequence of scrambled image in a selected set of DCT coefficients. After embedding, the watermark is adapted to the image by exploiting the masking characteristics of the human visual system, thus ensuring the watermark invisibility. By exploiting the statistical properties of the embedded sequence, the mark can be reliably extracted without resorting to the original uncorrupted image. Experimental results demonstrate that the watermark is robust to several signal processing techniques, including JPEG compression, cut, fuzzy, addition of noise, and sharpen.


Author(s):  
Farook Sattar ◽  
Dan Yu

Today, the Internet is a worldwide broadcasting capability, a mechanism for information dissemination and a medium for collaboration and interaction between individuals and their computers without regard for geographic location. With the rapid evolution of digital networks, digital libraries and World Wide Web (WWW) services, the convenient broadcasting or exposition of digital products on the global network leads easily to illegal copying, modifying and retransmission. The Internet has spawned many copyright issues involving multimedia content distribution. Let’s say an owner would like to sell or distribute a work to legal/registered users only. If the work were subsequently copied/redistributed illegally, how could the owner find who was responsible? Cryptographic techniques provide an effective solution for securing the delivery process and controlling the use of the contents that an user has obtained. However, with flawless transmission through the network, the contents after decryption are exactly the same as the original data. The contents can be copied perfectly infinite times. A user can also manipulate the contents. Digital watermarking (Arnold, Schmucker, & Wolthusen, 2003; Katzenbeisser & Petitcolas, 2000) offers a way to counter copyright piracy on global networks that are not solvable by cryptography. It provides proof and tracking capabilities to illegal copying and distribution of multimedia information. Most existing digital watermarking schemes are based on some assumptions for watermark detection and extraction. Some schemes require the previous knowledge of watermark locations, strengths or some thresholds. In some algorithms, the watermark is estimated with the help of the original watermark information. To ensure the robustness and invisibility of the watermark, the optimum embedding locations are usually different for different images. For a large image database, it could be a disadvantage to require watermark location and strength information for watermark detection and extraction. A large amount of information then needs to be stored. On the Internet, an owner would like to distribute multimedia data by signing different watermarks to different users in order to prevent illegal redistribution of the data by a legal user. In this scenario, watermark detection and extraction algorithms requiring information of either watermark embedding locations and strengths or the original watermark should fail, since one does not know exactly which watermark is embedded in a particular copy of the watermarked image. To this end, we present a new blind watermarking scheme (Yu, Sattar, & Ma, 2002; Yu & Sattar, 2003, 2005) based on Independent Component Analysis (ICA) (Hyvarinen, 1999; Hyvärinen & Oja, 1999; Lee, 1998) for color images, which can overcome existing problems of watermark detection and extraction as described above. The new ICA-based scheme is found to be efficient in the application of data tracking/tracing for multimedia distribution through the Internet against other digital watermarking schemes. By adopting this ICA-based watermarking scheme, an efficient multimedia distribution framework/protocol for copyright protection can be accomplished. This article is organized as follows: The watermark embedding and extraction algorithms for color image watermarking using the new ICA-based scheme are presented next, followed by a discussion and comments on the results, security issues, summary and future works.


Author(s):  
Huayin Si ◽  
Chang-Tsun Li

Although the development of multimedia processing techniques has facilitated the enrichment of information content, and the never-ending expansion of interconnected networks has constructed a solid infrastructure for information exchanges, meanwhile, the infrastructure and techniques have also smoothed the way for copyright piracy in virtual communities. As a result, the demand for intellectual property protection becomes apparent and exigent. In response to this challenge, digital watermarking has been proposed to serve this purpose. The idea of digital watermarking is to embed a small amount of secret information—the watermark—into the host digital productions, such as image and audio, so that it can be extracted later for the purposes of copyright assertion, authentication and content integrity verification, and so forth. Unlike traditional watermarks printed on paper, which are visible to human eyes, digital watermarks are usually invisible and can only be detected with the aid of a specially designed detector. One characteristic distinguishing digital watermarking from cryptography, which separates the digital signature from the raw data/content, is that digital watermarking embeds the signature in the content to be protected. The superiority of this characteristic is that while cryptography provides no protection after the content is decrypted, digital watermarking provides “intimate” protection, because the digital signature/secret information has become an inseparable constituent part of the content itself after embedding. Because of the very characteristic, digital watermarking requires no secret channel for communicating the digital signature that cryptography does. So in the last decade, digital watermarking has attracted numerous attention from researchers and is regarded as a promising technique in the field of information security. Various types of watermarking schemes have been developed for different applications. According to their natures, digital watermarking schemes could be classified into three categories: fragile watermarking, semi-fragile watermarking and robust watermarking. The schemes of the first two categories are developed for the purposes of multimedia authentication and content integrity verification, in which we expect the embedded watermark to be destroyed when attacks are mounted on its host media. More emphases of these schemes are placed on the capability of detecting and localizing forgeries and impersonations. The main difference between the two is that semi-fragile watermarking is tolerant to non-malicious operations, such as lossy compression within a certain compression ratio, while fragile watermarking is intolerant to any manipulations. Robust watermarking, on the other hand, is intended for the applications of copyright protection, wherein the watermarks should survive attacks aiming at weakening or erasing them provided the quality of the attacked content is still worth protecting. Therefore, the emphasis of robust watermarking schemes is placed on their survivability against attacks. This article is intended to focus on robust watermarking schemes for the application of copyright protection. See Li and Yang (2003) and Lin and Chang (2001) for more details about fragile and semi-fragile schemes.


2020 ◽  
Vol 10 (11) ◽  
pp. 2588-2599
Author(s):  
Saqib Ali Nawaz ◽  
Jingbing Li ◽  
Uzair Aslam Bhatti ◽  
Anum Mehmood ◽  
Raza Ahmed ◽  
...  

With the advancement of networks and multimedia, digital watermarking technology has received worldwide attention as an effective method of copyright protection. Improving the anti-geometric attack ability of digital watermarking algorithms using image feature-based algorithms have received extensive attention. This paper proposes a novel robust watermarking algorithm based on SURF-DCT perceptual hashing (Speeded Up Robust Features and Discrete Cosine Transform), namely blind watermarking. We design and implement a meaningful binary watermark embedding and extraction algorithm based on the SURF feature descriptor and discrete-cosine transform domain digital image watermarking algorithm. The algorithm firstly uses the affine transformation with a feature matrix and chaotic encryption technology to preprocess the watermark image, enhance the confidentiality of the watermark, and perform block and DCT coefficients extraction on the carrier image, and then uses the positive and negative quantization rules to modify the DCT coefficients. The embedding of the watermark is completed, and the blind extraction of the watermark realized. Correlation values are more than 90% in most of the attacks. It provides better results against different noise attacks and also better performance against rotation. Transparency and high computational efficiency, coupled with dual functions of copyright protection and content authentication, is the advantage of the proposed algorithm.


2013 ◽  
Vol 278-280 ◽  
pp. 1366-1373 ◽  
Author(s):  
Zi Teng ◽  
Xiu Feng Qiu ◽  
Jian Wei Liu

The copyright protection of multimedia information is more and more important in the digital age, digital watermarking is a solution to address the topic. This paper proposes a new robust image watermarking scheme based on discrete ridgelet transform (DRT) and discrete wavelet transform (DWT). The scheme respectively embeds a copy of color image watermark into DWT domain and DRT domain, and uses a conception of semi-watermark. Experiment results demonstrate that the watermark can resist various attacks such as adding Gaussian or Union Distribution Noise, JPEG compression, brightness adjustment, contrast adjustment, altering color balance, lens blur, zooming in or out, cropping and some combined attacks etc.


Sign in / Sign up

Export Citation Format

Share Document