scholarly journals Blind Image Watermarking in Canonical and Cepstrum Domains Based on 4-Connected t-o’clock Scrambling

Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 266
Author(s):  
Farhana Shirin Chowdhury ◽  
Pranab Kumar Dhar ◽  
Kaushik Deb ◽  
Takeshi Koshiba

Copyright protection of multimedia content is confronted with great challenges such as easy access to the Internet. Digital watermarking is widely applicable technique for copyright protection of multimedia contents. In this paper, a blind symmetric watermarking method in canonical and cepstrum domains based on four-connected t-o’clock scrambling is proposed. Initially, the watermark image is scrambled using the four-connected t-o’clock method to enhance the security. Then, the rotation operation is applied to the host image to extract the region where the watermark bits are embedded. After that, discrete linear canonical transform (DLCT) is applied to the extracted region to obtain the DLCT region. Cepstrum transform (CT) is performed on DLCT region to attain CT region. The CT region is then divided into non-overlapping blocks. The watermark bits are inserted into each block using max-heap and min-heap tree property. Experimental results illustrate that the proposed method shows high robustness against numerous attacks. Moreover, it produces high quality watermarked images and provides high security. Furthermore, it has superior performance to recent methods in terms of imperceptibility, robustness, and security.

2012 ◽  
Vol 60 (2) ◽  
pp. 317-321 ◽  
Author(s):  
P. Lipiński

Abstract. Recently, a variety of digital watermarking schemes have been developed for copyright protection of digital images. In robust watermarking, which is used in copyright protection, transform-based algorithms are used to ensure resilience of the watermark to common signal processing attacks. The most frequently used watermarking algorithms for additive watermark embedding involve DCT, DFT, SVD and DWT domains. In this article we verify which domain is optimal for robust, the additive watermark embedding scheme. We demonstrate that in additive watermark embedding the embedding domain plays more important role than the embedding formula.


Author(s):  
Brij B. Gupta ◽  
Somya Rajan Sahoo ◽  
Prashant Chugh ◽  
Vijay Iota ◽  
Anupam Shukla

In global internet usage, increasing multimedia message, which includes video, audio, images, and text documents, on the web raised a lot of consequences related to copyright. For copyright protection, authentication purpose and forgery detection digital watermarking is the robust way in social network content protection. In this technique, the privacy information is embedded inside the multimedia content like image and video. The protected content embedded inside multimedia content is called watermark-enabled information. To make more effective the process of watermarking, the content encrypted before embedding to the image. Basically, the digital watermarking embedded process implemented in two different domains called spatial and frequency domain. In spatial domain digital watermarking, the watermark information is embedded in the least significant bit of the original image on the basis of bit plane selected and on the basis of the pixels of image, embedding, and detection is performed.


Author(s):  
Alessandro Piva ◽  
Roberto Caldelli ◽  
Alessia De Rosa ◽  
Mauro Barni ◽  
Vito Cappellini

The need to safeguard the property rights of multimedia content from unauthorized copying and the possibility to determine the true owners of the asset can be faced by resorting to efficient digital watermarking systems. This chapter presents a mathematical formulation to define a digital watermarking system and describes the general requirements to be satisfied, with more emphasis given to the aspects of security, robustness, and imperceptibility. After this general discussion, the two main classes of digital watermarking schemes, namely the spread-spectrum watermarking and the side-informed watermarking are explained by highlighting their main advantages and drawbacks. This analysis is completed by the description of a practical implementation of a digital image watermarking scheme. Finally, the use of watermarking systems in the framework of a DRM is deeply analyzed.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Qiang Wei ◽  
Hu Wang ◽  
Gongxuan Zhang

With the rapid development of Internet and cloud storage, data security sharing and copyright protection are becoming more and more important. In this paper, we introduce a robust image watermarking algorithm for copyright protection based on variational autoencoder networks. The proposed image watermarking embedding and extracting network consists of three parts: encoder subnetwork, decoder subnetwork, and detector subnetwork. In the training process, the encoder and decoder subnetworks learn a robust image representation model and further implement the embedding of 1-bit watermark image to the cover image. Meanwhile, the detector subnetwork learns to extract the 1-bit watermark image from the embedding image. Experimental results demonstrate that the watermarked images generated by the proposed algorithm have better visual effects and are more robust against geometric and noise attacks than traditional approaches in the transform domain.


2020 ◽  
Vol 10 (11) ◽  
pp. 2588-2599
Author(s):  
Saqib Ali Nawaz ◽  
Jingbing Li ◽  
Uzair Aslam Bhatti ◽  
Anum Mehmood ◽  
Raza Ahmed ◽  
...  

With the advancement of networks and multimedia, digital watermarking technology has received worldwide attention as an effective method of copyright protection. Improving the anti-geometric attack ability of digital watermarking algorithms using image feature-based algorithms have received extensive attention. This paper proposes a novel robust watermarking algorithm based on SURF-DCT perceptual hashing (Speeded Up Robust Features and Discrete Cosine Transform), namely blind watermarking. We design and implement a meaningful binary watermark embedding and extraction algorithm based on the SURF feature descriptor and discrete-cosine transform domain digital image watermarking algorithm. The algorithm firstly uses the affine transformation with a feature matrix and chaotic encryption technology to preprocess the watermark image, enhance the confidentiality of the watermark, and perform block and DCT coefficients extraction on the carrier image, and then uses the positive and negative quantization rules to modify the DCT coefficients. The embedding of the watermark is completed, and the blind extraction of the watermark realized. Correlation values are more than 90% in most of the attacks. It provides better results against different noise attacks and also better performance against rotation. Transparency and high computational efficiency, coupled with dual functions of copyright protection and content authentication, is the advantage of the proposed algorithm.


2013 ◽  
Vol 278-280 ◽  
pp. 1366-1373 ◽  
Author(s):  
Zi Teng ◽  
Xiu Feng Qiu ◽  
Jian Wei Liu

The copyright protection of multimedia information is more and more important in the digital age, digital watermarking is a solution to address the topic. This paper proposes a new robust image watermarking scheme based on discrete ridgelet transform (DRT) and discrete wavelet transform (DWT). The scheme respectively embeds a copy of color image watermark into DWT domain and DRT domain, and uses a conception of semi-watermark. Experiment results demonstrate that the watermark can resist various attacks such as adding Gaussian or Union Distribution Noise, JPEG compression, brightness adjustment, contrast adjustment, altering color balance, lens blur, zooming in or out, cropping and some combined attacks etc.


Author(s):  
Ruo Ando ◽  
Yoshiyasu Takefuji

With the rapid advance in digital network, digital libraries, and particularly WWW (World Wide Web) services, we can retrieve many kinds of images on personal and mobile computer anytime and anywhere. At the same time, secure image archiving is becoming a major research area because the serious concern is raised about copyright protection and authority identification in digital media. A more sophisticated technique is required for future multimedia copyright protection. In this chapter we propose a secure image archiving using novel digital-watermarking techniques. Firstly, a nonlinear adaptive system (neural network) is applied for frequency-based digital watermarking. Secondly, we discuss application-oriented watermarking method for GIS image archiving. This chapter is divided into two parts. First section is about the way to apply nonlinear adaptive system for frequency-based image watermarking. We propose a new asymmetric technique employing nonlinear adaptive system trained on frequency domain. Our system uses two public keys to prevent removal attack and archive more fragile watermarking. In embedding, location information of frequency domain, where adaptive system is trained, is binalized, expressed in hexadecimal number, and encrypted in asymmetric cryptosystem. Encrypted location information is embedded in several parts of digital host contents. In generating key, supervised neural networks learn to assign the array of coefficients to teacher signal corresponding to the message to insert. This is one kind of transform-based method to generate public key from private key. In extracting, we use key matrix created by one-way signal processing of adaptive system. Proposal method is tested in still image, and we have empirically obtained the results that the proposal model is functional in implementing more secure and fragile watermarking compared with previous techniques, such as correlation and transform-based asymmetric watermarking. Several experiments are reported to validate the effectiveness of our watermarking method. Second section is about the application of GIS image archiving using digital watermarking technique. Recently, the utilization of GIS (geographical information system) is becoming rapidly pervasive. Consequently, new methodology of archiving and managing images is a pressing problem for GIS users. It is also expected that as the utilization of GIS becomes widely spread, protecting copyright and confidential images will be more important. In this chapter, we propose a three-layer image data format that makes it possible to synthesize two kinds of related images and analysis information in one image data size. To achieve the confidentiality of one hidden image, we apply the private watermarking scheme, where the algorithm is closed to the public. In the proposal model, encoder netlist embedded in the third layer is generated by FOL prover to achieve more secure and less information to decode it, compared with one operation of another block cipher such as RSA. Proposal system users can process two images without the cost of maintaining key and decoding operation.


2013 ◽  
pp. 436-460
Author(s):  
Kensuke Naoe ◽  
Yoshiyasu Takefuji

The proposed method contributes to secure image digital watermarking for content identification without damaging or losing any detailed data of visual images. The features of our proposed method employ an application to authenticate multimedia, similarity comparison, verification of image integrity and copyright protection of multimedia contents.


2010 ◽  
Vol 439-440 ◽  
pp. 652-657
Author(s):  
Yan Niu ◽  
Jiang Yi Du ◽  
La La Li

Digital Watermarking as the offset of information wrap technology was embedded secret information in digital products in order to protect the copyright. LSB takes the watermark image embedded into the most unimportant places of vector images. This algorithm is very simple, strong real-time, embedded stack information and can be accurate resume embedded information. We have completed needs analysis and delineation of functional modules of image watermarking software. It is easy to use and had realized the basic accession.


Sign in / Sign up

Export Citation Format

Share Document