scholarly journals Elastohydrodynamic Contact Model For Calculation Of Axial And Angular Stiffness In Thrust Bearing

2012 ◽  
Vol 59 (4) ◽  
pp. 453-467
Author(s):  
Mikhail Temis ◽  
Alexander Lazarev

Thrust bearing model is developed for fluid flow calculation and for determination of bearing integral characteristics in the presence of sliding surfaces closure and shaft angular displacements. The model is based on the coupled solution of the problem of incompressible fluid flow between the sliding surfaces and the problem of bearing and shaft elements deformation under the action of the fluid film pressure. Verification of the bearing model results is carried out by the comparison versus the fluid flow calculation results obtained by STAR-CD software and the experimental and theoretical results represented in the certain literature. Thrust bearing characteristics are determined versus sliding surfaces closure and rotating disk (runner) angular displacements. The contribution of the sliding surfaces deformations into bearing integral characteristics is estimated.

1991 ◽  
Vol 227 ◽  
Author(s):  
Roger K. Yonkoski ◽  
David S. Soane

ABSTRACTPolyimide is commonly used in the microelectronic industry for interconnection applications because of its ability to planarize features typically found on an IC chip. A mathematical model is developed to describe fluid flow on a rotating disk based on the principles of mass and momentum conservation. Constitutive relationships necessary for this model are proposed. Experimental data for polyimide precursor solutions are presented which enable the determination of parameters for the constitutive equations. This model is used to describe the film profiles over flat surfaces and near micron-sized features. Attention is focused on the coupling between mass transport and fluid flow as well as the effects of surface tension on film profiles over topographical features.


2014 ◽  
Vol 698 ◽  
pp. 466-471
Author(s):  
Oleg V. Panchenko ◽  
Alexey M. Levchenko ◽  
Victor A. Karkhin

Specimens of various sizes are used to determine hydrogen content in deposited metals in such standards as ISO 3690, AWS A 4.3, and GOST 23338 while measuring methods are the same. It causes problems in comparison of experimental results and brings up the following question: what kind of specimen size is optimal to determine hydrogen content? An optimal specimen size was estimated using a calculation method. Experimental and calculation results obtained by using specimens with estimated dimensions were compared to the results obtained by using the specimen with dimensions of 100*25*8 mm to determine hydrogen content in a deposited metal.


2005 ◽  
Vol 127 (3) ◽  
pp. 679-684 ◽  
Author(s):  
S. Charles ◽  
O. Bonneau ◽  
J. Fre^ne

The characteristics of hydrostatic bearings can be influenced by the compensating device they use, for example, a thin-walled orifice (diaphragm). The flow through the orifice is given by a law where an ad hoc discharge coefficient appears, and, in order to guarantee the characteristics of the hydrostatic bearing, this coefficient must be calibrated. The aim of this work is to provide an accurate estimation of the discharge coefficient under specific conditions. Therefore an experimental bench was designed and a numerical model was carried out. The results obtained then by the experimental and theoretical approach were compared with the values given by the literature. Finally, the influence of the discharge coefficient on the behavior of a thrust bearing is examined.


1949 ◽  
Vol 16 (2) ◽  
pp. 123-133
Author(s):  
H. Poritsky

Abstract This paper extends the discussion of the approximate method of integrating the equations of compressible fluid flow in the hodograph plane first presented by the author before the Sixth International Congress of Applied Mechanics, Paris, France, September, 1948. As an introduction to the discussion of the polygonal approximation method, fundamental fluid-flow equations are reviewed briefly. Determination of the flow function ψ by the “Method of Reflections” is described and an application of the method illustrated. How flow in the physical plane can be determined by superposition of solutions discussed is shown for the simpler incompressible case.


1947 ◽  
Vol 14 (2) ◽  
pp. A113-A118
Author(s):  
C. Concordia ◽  
G. K. Carter

Abstract The objects of this paper are, first, to describe an electrical method of determining the flow pattern for the flow of an incompressible ideal fluid through a two-dimensional centrifugal impeller, and second, to present the results obtained for a particular impeller. The method can be and has been applied to impellers with blades of arbitrary shape, as distinguished from analytical methods which can be applied directly only to blades of special shape (1).


2010 ◽  
Vol 132 (11) ◽  
Author(s):  
A. Arikoglu ◽  
G. Komurgoz ◽  
I. Ozkol ◽  
A. Y. Gunes

The present work examines the effects of temperature and velocity jump conditions on heat transfer, fluid flow, and entropy generation. As the physical model, the axially symmetrical steady flow of a Newtonian ambient fluid over a single rotating disk is chosen. The related nonlinear governing equations for flow and thermal fields are reduced to ordinary differential equations by applying so-called classical approach, which was first introduced by von Karman. Instead of a numerical method, a recently developed popular semi numerical-analytical technique; differential transform method is employed to solve the reduced governing equations under the assumptions of velocity and thermal jump conditions on the disk surface. The combined effects of the velocity slip and temperature jump on the thermal and flow fields are investigated in great detail for different values of the nondimensional field parameters. In order to evaluate the efficiency of such rotating fluidic system, the entropy generation equation is derived and nondimensionalized. Additionally, special attention has been given to entropy generation, its characteristic and dependency on various parameters, i.e., group parameter, Kn and Re numbers, etc. It is observed that thermal and velocity jump strongly reduce the magnitude of entropy generation throughout the flow domain. As a result, the efficiency of the related physical system increases. A noticeable objective of this study is to give an open form solution of nonlinear field equations. The reduced recurative form of the governing equations presented gives the reader an opportunity to see the solution in open series form.


2018 ◽  
Vol 5 (2) ◽  
pp. 270-278 ◽  
Author(s):  
M. Basyir ◽  
M. Nasir ◽  
Suryati Suryati ◽  
Widdha Mellyssa

Emergency Reporting Application is an android-based application that serves to help the community in reporting the emergency condition. This application allows users to choose and contact the emergency services office, without the need to notice their position and phone number. Selection of emergency services office is also automatically selected by the system by taking into account the distance between the complainant and the emergency services office. The selected emergency services office is the nearest emergency service office from the complainant so that the delay in coming assistance can be minimized. Therefore, this proposed application requires a GPS feature to recording, reporting and SMS positioning for message delivery of reports. The distance between the position of the complainant and the position of the emergency service office, in the form of latitude and longitude data, is requested using the Haversine formula taking into account the degree of curvature of the earth. Emergency service offices include police and hospital offices spread over 25 different districts. Furthermore, the reporter's position calculation results were compared with all selected emergency service offices and obtained 1 nearest emergency service office. Calculating the accuracy and delay value of the system will do system testing. Accuracy test results using the method of 100% Haversine and the average delay of the system is 4.5 seconds.


Sign in / Sign up

Export Citation Format

Share Document