scholarly journals Effect of Water Glass Modification on Its Viscosity and Wettability of Quartz Grains

2012 ◽  
Vol 12 (3) ◽  
pp. 59-62 ◽  
Author(s):  
A. Kmita ◽  
B. Hutera

Abstract The aim of the present study was to develop a modifier for water glass. The method of thermal generation of metal oxide nanoparticles was adapted and used in the research. Nanoparticles of ZnO from the thermal decomposition of basic zinc carbonate were used. A method for the modifier introduction was developed, and the effect of modifier content and organic solvent type on the physico-chemical properties of binder (viscosity) and quartz wettability was determined. Binder viscosity was examined from the flow curves plotted with the help of a RHEOTEST 2 rotational rheometer equipped with proper software. Quartz wettability was determined examining timerelated changes in the value of the contact angle in a quartz-binder system, until full stabilisation of the angle value has been achieved. Binder modification was carried out on sodium water glass designated as R"145". The water glass modifiers were suspensions of ZnO nanoparticles in propanol and methanol at a fixed concentration of c = 0.3 M and with the size of nanoparticles comprised in a range of <61 - 981 nm>. Water glass modification with the suspensions of ZnO nanoparticles in methanol and propanol showed the effect of modifier on the water glass viscosity and quartz wettability. This effect depends on the type of alcohol used. The ZnO suspension in propanol (alcohol with a longer hydrocarbon chain) affects more strongly the viscosity of binder and quartz wettability than the methanol suspension

Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 678
Author(s):  
Stefano Alberti ◽  
Irene Basciu ◽  
Marco Vocciante ◽  
Maurizio Ferretti

In this contribution, the photoactivity upon activation by simulated sunlight of zinc oxide (ZnO) obtained from two different synthetic pathways (Acetate and Nitrate) is investigated for water purification. Different reagents and processes were exploited to obtain ZnO nanoparticles. Products have been characterized by means of X-Ray Diffraction, Scanning Electron Microscopy along with Energy Dispersive Spectrometer, Dynamic Light Scattering, and Diffuse Reflectance Measurements, to highlight the different outcomes ascribable to each synthesis. A comparison of characteristics and performances was also carried out with respect to commercial ZnO. Nanoparticles of this semiconductor can be obtained as aggregates with different degrees of purity, porosity, and shape, and their physical-chemical properties have been addressed to the specific use in wastewater treatment, testing their effectiveness on the photocatalytic degradation of methylene blue (MB) as a model pollutant. Excluding the commercial sample, experimental results evidenced a better photocatalytic behavior for the ZnO Nitrate sample annealed at 500 °C, which was found to be pure and stable in water, suggesting that ZnO could be effectively exploited as a heterogeneous photocatalyst for the degradation of emerging pollutants in water, provided that thermal treatment is included in the synthetic process.


2020 ◽  
Vol 14 (3) ◽  
pp. 1999-2008
Author(s):  
H. Syed Jahangir ◽  
T. Tamil Kumar ◽  
M. Mary Concelia ◽  
R. Alamelu

Green synthesis nanoparticles were considered as an alternative effective resource instead of chemically engineered metal oxide nanoparticles. Using leaf extracts for green synthesis, essential for the reduction and oxidation process of the metals. Phyllanthus niruri (L.) and Aristolochia indica (L.) leaf extracts were used to synthesize yellowish brown coloured silver (Ag) and white coloured zinc oxide (ZnO) nanoparticles. Synthesized green nanoparticles characterized by different spectroscopic analysis (XRD, XPS, FTIR, PL) and TEM. Characterization results confirmed the particles morphology, size, structure and also their optical and photonic properties. Three different concentrations of Ag and ZnO NPs were analysed against three (gram positive) and five (gram negative) bacteria. Increased levels of green synthesized Ag and ZnO NPs showed increased zone of inhibition than amoxicillin (positive control). Our study proved that the green synthesized Ag and ZnO NPs showed similar unique physical and chemical properties with metal oxide nanoparticles but less toxic while their discharge into the ecosystem.


2018 ◽  
Vol 67 (7) ◽  
pp. 823-828
Author(s):  
Fahad Aljuhaimi ◽  
Kashif Ghafoor ◽  
Mehmet Musa Özcan ◽  
Otilija Miseckaite ◽  
Elfadıl E Babiker ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 547
Author(s):  
Joseph S. Erlichman ◽  
J. C. Leiter

Metal oxide nanoparticles (NPs) have received a great deal of attention as potential theranostic agents. Despite extensive work on a wide variety of metal oxide NPs, few chemically active metal oxide NPs have received Food and Drug Administration (FDA) clearance. The clinical translation of metal oxide NP activity, which often looks so promising in preclinical studies, has not progressed as rapidly as one might expect. The lack of FDA approval for metal oxide NPs appears to be a consequence of the complex transformation of NP chemistry as any given NP passes through multiple extra- and intracellular environments and interacts with a variety of proteins and transport processes that may degrade or transform the chemical properties of the metal oxide NP. Moreover, the translational models frequently used to study these materials do not represent the final therapeutic environment well, and studies in reduced preparations have, all too frequently, predicted fundamentally different physico-chemical properties from the biological activity observed in intact organisms. Understanding the evolving pharmacology of metal oxide NPs as they interact with biological systems is critical to establish translational test systems that effectively predict future theranostic activity.


Clean Energy ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 19-31
Author(s):  
Baskar Thangaraj ◽  
Pravin Raj Solomon

Abstract Biodiesel—an impressive alternative fuel with favourable physico-chemical properties having environmental benefits—is prepared from vegetable oil. However, the cost is one of the main hurdles in commercializing it. Its production by conventional transesterification processes needs high ambient temperature and a specialized catalyst. Due to the multifaceted adversities of many of the catalysts, there is active consideration for an electrocatalytic process that does not require elevated temperature. In addition, an electrocatalytic process is carried out in the presence or absence of a catalyst or co-solvent. In this review, various parameters such as electrolysis voltage, stirring rate, electrode type, water content, co-solvent type, reaction temperature, reaction duration, oil-to-methanol molar ratio and concentration of NaCl affecting the electrocatalytic transesterification process are presented.


Author(s):  
H. Gross ◽  
H. Moor

Fracturing under ultrahigh vacuum (UHV, p ≤ 10-9 Torr) produces membrane fracture faces devoid of contamination. Such clean surfaces are a prerequisite foe studies of interactions between condensing molecules is possible and surface forces are unequally distributed, the condensate will accumulate at places with high binding forces; crystallites will arise which may be useful a probes for surface sites with specific physico-chemical properties. Specific “decoration” with crystallites can be achieved nby exposing membrane fracture faces to water vopour. A device was developed which enables the production of pure water vapour and the controlled variation of its partial pressure in an UHV freeze-fracture apparatus (Fig.1a). Under vaccum (≤ 10-3 Torr), small container filled with copper-sulfate-pentahydrate is heated with a heating coil, with the temperature controlled by means of a thermocouple. The water of hydration thereby released enters a storage vessel.


1990 ◽  
Vol 63 (03) ◽  
pp. 499-504 ◽  
Author(s):  
A Electricwala ◽  
L Irons ◽  
R Wait ◽  
R J G Carr ◽  
R J Ling ◽  
...  

SummaryPhysico-chemical properties of recombinant desulphatohirudin expressed in yeast (CIBA GEIGY code No. CGP 39393) were reinvestigated. As previously reported for natural hirudin, the recombinant molecule exhibited abnormal behaviour by gel filtration with an apparent molecular weight greater than that based on the primary structure. However, molecular weight estimation by SDS gel electrophoresis, FAB-mass spectrometry and Photon Correlation Spectroscopy were in agreement with the theoretical molecular weight, with little suggestion of dimer or aggregate formation. Circular dichroism studies of the recombinant molecule show similar spectra at different pH values but are markedly different from that reported by Konno et al. (13) for a natural hirudin-variant. Our CD studies indicate the presence of about 60% beta sheet and the absence of alpha helix in the secondary structure of recombinant hirudin, in agreement with the conformation determined by NMR studies (17)


1963 ◽  
Vol 79 (2) ◽  
pp. 263-293 ◽  
Author(s):  
E.M. Savitskii ◽  
V.F. Terekhova ◽  
O.P. Naumkin

1990 ◽  
Vol 39 (442) ◽  
pp. 996-1000 ◽  
Author(s):  
Ayao TAKASAKA ◽  
Hideyuki NEMOTO ◽  
Hirohiko KONO ◽  
Yoshihiro MATSUDA

Sign in / Sign up

Export Citation Format

Share Document