scholarly journals Celebrating the 50th Anniversary of Professor Hermann Sleumer's Classic Treatment of the Ericaceae for Flora Malesiana

Author(s):  
George Argent

The major taxonomic changes that have been made within the Ericaceae since the publication of Professor Sleumer’s classic Flora Malesiana account are presented, as well as how these affect the Malesian region. Examples of Professor Sleumer’s acuity in taxonomic research are cited.

2020 ◽  
Vol 8 ◽  
Author(s):  
David Plotkin ◽  
Akito Kawahara

The subfamily Geometrinae (Lepidoptera: Geometridae), commonly known as emerald moths, is an ecologically diverse group of moths with over 2,500 described species. Many taxonomic and phylogenetic studies of Geometrinae have been undertaken in the past decade, resulting in hundreds of new taxonomic changes since online publication of the most recent checklist in December 2007. This review synthesises the last 12 years of alpha-taxonomic research in Geometrinae. A comprehensive list of Geometrinae genus- and species-group descriptions, synonymies, combinations and other taxonomic changes, made since 2007, is provided. Since 2007, the known species richness of Geometrinae has increased from 2,529 to 2,642 species; an updated list of all these species is presented in a supplementary spreadsheet.


Zootaxa ◽  
2018 ◽  
Vol 4434 (3) ◽  
pp. 511 ◽  
Author(s):  
SPARTACO GIPPOLITI ◽  
COLIN P. GROVES

For more than half a century, little taxonomic revisionary work has been directed towards extant European mammals so that the limits of most geographically widespread polytypic species remained scientifically untested. Occasionally, taxonomic changes have been proposed and several new species have been resurrected / discovered in the last decades mainly on the basis of genetic studies, often considered the only tool to establish objective species boundaries. Nevertheless, the precise details of species boundaries, subspecific variation and phylogenetic relationships remain unknown for several European mammal taxa. The inadequacies of outdated, incomplete taxonomic knowledge reach an extreme in southern Europe, and notably Italy, where cryptic species abound and specimen-based research is scanty. The state of mammalian taxonomic knowledge in Italy shows that Linnaean and Wallacean shortfalls are no means restricted to hyperdiverse, understudied tropics. They undermine our knowledge of temperate regions, with severe consequences for biodiversity conservation policies in Europe, where conservation assessments overlook significant endemic biodiversity. European mammalogy stands to benefit from an infusion of the tree-thinking philosophy that undergirds evolutionary theory and particularly phylogenetic methods systematics. Furthermore, it is important that taxonomic research be seen as a normal part of scientific advancement and of critical importance as the basis of a sound biodiversity conservation policy. 


2020 ◽  
Vol 41 (2) ◽  
pp. 139-189 ◽  
Author(s):  
Jeroen Speybroeck ◽  
Wouter Beukema ◽  
Christophe Dufresnes ◽  
Uwe Fritz ◽  
Daniel Jablonski ◽  
...  

Abstract The last species list of the European herpetofauna was published by Speybroeck, Beukema and Crochet (2010). In the meantime, ongoing research led to numerous taxonomic changes, including the discovery of new species-level lineages as well as reclassifications at genus level, requiring significant changes to this list. As of 2019, a new Taxonomic Committee was established as an official entity within the European Herpetological Society, Societas Europaea Herpetologica (SEH). Twelve members from nine European countries reviewed, discussed and voted on recent taxonomic research on a case-by-case basis. Accepted changes led to critical compilation of a new species list, which is hereby presented and discussed. According to our list, 301 species (95 amphibians, 15 chelonians, including six species of sea turtles, and 191 squamates) occur within our expanded geographical definition of Europe. The list includes 14 non-native species (three amphibians, one chelonian, and ten squamates).


Author(s):  
R. D. Heidenreich

This program has been organized by the EMSA to commensurate the 50th anniversary of the experimental verification of the wave nature of the electron. Davisson and Germer in the U.S. and Thomson and Reid in Britian accomplished this at about the same time. Their findings were published in Nature in 1927 by mutual agreement since their independent efforts had led to the same conclusion at about the same time. In 1937 Davisson and Thomson shared the Nobel Prize in physics for demonstrating the wave nature of the electron deduced in 1924 by Louis de Broglie.The Davisson experiments (1921-1927) were concerned with the angular distribution of secondary electron emission from nickel surfaces produced by 150 volt primary electrons. The motivation was the effect of secondary emission on the characteristics of vacuum tubes but significant deviations from the results expected for a corpuscular electron led to a diffraction interpretation suggested by Elasser in 1925.


Author(s):  
W.M. Stobbs

I do not have access to the abstracts of the first meeting of EMSA but at this, the 50th Anniversary meeting of the Electron Microscopy Society of America, I have an excuse to consider the historical origins of the approaches we take to the use of electron microscopy for the characterisation of materials. I have myself been actively involved in the use of TEM for the characterisation of heterogeneities for little more than half of that period. My own view is that it was between the 3rd International Meeting at London, and the 1956 Stockholm meeting, the first of the European series , that the foundations of the approaches we now take to the characterisation of a material using the TEM were laid down. (This was 10 years before I took dynamical theory to be etched in stone.) It was at the 1956 meeting that Menter showed lattice resolution images of sodium faujasite and Hirsch, Home and Whelan showed images of dislocations in the XlVth session on “metallography and other industrial applications”. I have always incidentally been delighted by the way the latter authors misinterpreted astonishingly clear thickness fringes in a beaten (”) foil of Al as being contrast due to “large strains”, an error which they corrected with admirable rapidity as the theory developed. At the London meeting the research described covered a broad range of approaches, including many that are only now being rediscovered as worth further effort: however such is the power of “the image” to persuade that the above two papers set trends which influence, perhaps too strongly, the approaches we take now. Menter was clear that the way the planes in his image tended to be curved was associated with the imaging conditions rather than with lattice strains, and yet it now seems to be common practice to assume that the dots in an “atomic resolution image” can faithfully represent the variations in atomic spacing at a localised defect. Even when the more reasonable approach is taken of matching the image details with a computed simulation for an assumed model, the non-uniqueness of the interpreted fit seems to be rather rarely appreciated. Hirsch et al., on the other hand, made a point of using their images to get numerical data on characteristics of the specimen they examined, such as its dislocation density, which would not be expected to be influenced by uncertainties in the contrast. Nonetheless the trends were set with microscope manufacturers producing higher and higher resolution microscopes, while the blind faith of the users in the image produced as being a near directly interpretable representation of reality seems to have increased rather than been generally questioned. But if we want to test structural models we need numbers and it is the analogue to digital conversion of the information in the image which is required.


Sign in / Sign up

Export Citation Format

Share Document