scholarly journals Model-based Predictive Control implementation for Cooperative Adaptive Cruise Control

2018 ◽  
Vol 2 (1) ◽  
pp. 1-10
Author(s):  
António Lopes ◽  
Rui Esteves Araújo

The automation of road vehicles has become a necessity to improve the efficiency and safety of this system. In a vehicle formation it is important to maintain a safety distance between the vehicles. The control of a vehicle spacing distance and longitudinal velocity can be achieved through the implementation of a model-based predictive controller. This implementation of a cooperative adaptive cruise control allows the access of another vehicle state information through vehicular communication technology and promote state prediction and ultimately system stability. The optimization algorithm performs the computation of the control input in a control horizon window and ensures that the spacing error takes only positive values. The results of the proposed controller are evaluated through the computational tool Simulink in the two-vehicle platoon. The controller is implemented in the precedent vehicle. To assess the performance of the proposed controller different control parameters and constraints were used.

Author(s):  
Jaswandi Sawant ◽  
Uttam Chaskar

Cooperative adaptive cruise control (CACC) has a strong potential to improvise highway traffic capacity and ease traffic disturbances. Extensive exploration is not carried out in the area of CACC for a cut-in maneuver. Contemporary control strategies proposed for CACC cannot regulate the peaking of control input and thus the acceleration/deceleration of following vehicles when applied for various real traffic scenarios. This paper aims to develop a non-linear disturbance observer-based sliding mode control to control a CACC system for various traffic scenarios. The proposed observer estimates the uncertainty present in the actuator dynamics and the preceding vehicle’s acceleration as the lumped disturbance at the same time, it adjusts the observer gain to alleviate the peaking of control input. The stability of individual vehicles and the string stability of vehicle platoon are derived The performance of the proposed scheme is validated with various traffic scenarios, that is, cut-in maneuver, cut-out maneuver, and non-zero initial conditions. The effectiveness of the proposed scheme is demonstrated by comparing it with a linear disturbance observer-based control.


Author(s):  
Iman Mahdinia ◽  
Ramin Arvin ◽  
Asad J. Khattak ◽  
Amir Ghiasi

Connected and automated vehicle technologies have the potential to significantly improve transportation system performance. In particular, advanced driver-assistance systems, such as adaptive cruise control (ACC) and cooperative adaptive cruise control (CACC), may lead to substantial improvements in performance by decreasing driver inputs and taking over control of the vehicle. However, the impacts of these technologies on the vehicle- and system-level energy consumption, emissions, and safety have not been quantified in field tests. The goal of this paper is to study the impacts of automated and cooperative systems in mixed traffic containing conventional, ACC, and CACC vehicles. To reach this goal, experimental data based on real-world conditions are collected (in tests conducted by the Federal Highway Administration and the U.S. Department of Transportation) with presence of ACC, CACC, and conventional vehicles in a vehicle platoon scenario and a cooperative merging scenario. Specifically, a platoon of five vehicles with different vehicle type combinations is analyzed to generate new knowledge about potential safety, energy efficiency, and emission improvement from vehicle automation and cooperation. Results show that adopting the CACC system in a five-vehicle platoon substantially reduces the driving volatility and reduces the risk of rear-end collision which consequently improves safety. Furthermore, it decreases fuel consumption and emissions compared with the ACC system and manually-driven vehicles. Results of the merging scenario show that while the cooperative merging system slightly reduces the driving volatility, the fuel consumption and emissions can increase because of sharper accelerations of CACC vehicles compared with manually-driven vehicles.


Author(s):  
Jan-Niklas Meier ◽  
Aravind Kailas ◽  
Oubada Abuchaar ◽  
Maher Abubakr ◽  
Rawa Adla ◽  
...  

This paper focuses on evaluating, in a structured manner, the potential benefits, along with the implementation and performance issues, of utilizing dedicated short range communication-based communication in conjunction with adaptive cruise control (ACC) systems. This work was done in the United States under a cooperative agreement between the Crash Avoidance Metrics Partners LLC and the Federal Highway Administration. Designing cooperative adaptive cruise control (CACC) as an extension of ACC, and by using a combination of a comprehensive simulation framework and test vehicles, benefits of vehicular communication on string stability were established, and the performance of the novel CACC-enabling software modules were validated. Another key contribution of this work is the consideration of vehicles with different dynamic responses as a part of a single string. Four light-duty vehicles (hatchback, mid- and full-size sedans, large SUV), each from a different automotive original equipment manufacturer, were retrofitted with common ACC and vehicular communication systems. They were tested under many different conditions to obtain performance data (such as radar sensor readings, etc.) when operating in a vehicle string. These data were then integrated into the simulation environment to develop and validate the CACC modules. The paper concludes with a recommendation of some data elements for over-the-air messages to enable CACC functionality.


2019 ◽  
Vol 52 (5-6) ◽  
pp. 369-378 ◽  
Author(s):  
Xiulan Song ◽  
Xiaoxin Lou ◽  
Limin Meng

In this paper, we consider the cooperative adaptive cruise control problem of connected autonomous vehicles networked by heterogeneous wireless channel transmission. The cooperative adaptive cruise control model with variable input delays is established to describe the varying time-delays induced from vehicular actuators and heterogeneous channel transmission. Then a set of decentralized time-delay feedback cooperative adaptive cruise control controllers is computed in such way that each vehicle evaluates its own adaptive cruise control strategy using only neighborhood information. In order to establish string stability of the connected vehicle platoon with the decentralized controllers, the sufficient conditions are obtained in the form of linear matrix inequalities. The scenarios, consisting of four different cars with three heterogeneous wireless channels, are used to demonstrate the effectiveness of the presented method.


Author(s):  
Keely Varada ◽  
Chengzhi Yuan ◽  
Manbir Sodhi

Platooning, or controlled management of vehicle formation, enables multiple vehicles equipped with adaptive cruise control (ACC) systems to drive behind one another with a specified inter-vehicle distance, acting together as one unit. Typically, delays in throttle and brake response, as well as in vehicle computer systems, are unpredictable and time-varying, and can ultimately lead to performance degradation and system destabilization. The platoon control system must thus be designed in a way so as to mitigate the effects delays can impose on system stability. This paper presents a novel robust multi-vehicle platoon control algorithm that compensates for time-varying delays under the integral quadratic constraint (IQC) framework. All vehicle models are assumed to incorporate heterogeneous time-varying actuation/input delays. The simulation results exemplify the controller’s effectiveness in maintaining overall stability and platooning performance in the presence of time-varying input delays.


Author(s):  
Zijia Zhong ◽  
Joyoung Lee ◽  
Liuhui Zhao

Automated longitudinal control technology has been tested through cooperative adaptive cruise control (CACC), which is envisioned to improve highway mobility drastically by forming a vehicle platoon with short headway while maintaining stable traffic flow under disturbances. Compared with previous research efforts with the pseudomultiobjective optimization process, this paper proposes an automated longitudinal control framework based on multiobjective optimization (MOOP) for CACC by taking into consideration four optimization objectives: mobility, safety, driver comfort, and fuel consumption. Of the target time headways that have been tested, the proposed CACC platoon control method achieved the best performance with 0.9- and 0.6-s target time headways. Compared with a non-optimization-based CACC, the MOOP CACC achieved 98%, 93%, 42%, and 33% objective value reductions of time headway deviation, unsafe condition, jitter, and instantaneous fuel consumption, respectively. In comparison with a single-objective-optimization-based approach, which optimized only one of the four proposed objectives, it was shown that the MOOP-based CACC maintained a good balance between all of the objective functions and achieved Pareto optimality for the entire platoon.


Sign in / Sign up

Export Citation Format

Share Document