scholarly journals ANALISIS LINTAS PERTUMBUHAN DAN PRODUKSI TERHADAP PROTEIN KACANG TUNGGAK (Vigna unguiculata L) GENERASI M2

2021 ◽  
Vol 6 (1) ◽  
pp. 7
Author(s):  
Yukarie Ayu Wulandari ◽  
Sobir Sobir ◽  
Syarifah Iis Aisyah

Cowpea (V. unguiculata L) can be developed as a source of vegetable protein because it contains relatively high protein and high lysine. The protein content in seeds is an accumulation of character components that play a role in protein formation, whose relationship can be predicted using cross correlation and analysis coefficients. The study was carried out in the experimental garden of Pasir Kuda PKHT of IPB in February - May 2018. Protein analysis is carriedout in the Testing Laboratory of the Department of Agronomy and Horticulture, Faculty of Agriculture, IPB in June - July 2018. The study was conducted using 30 putative mutant test genotypes of M2 generation result from the mutation of gamma ray irradiation and KM4 genotype as a comparison which was repeated three times. The protein content of the seeds was analyzed using the Kjeldahl method and then analyzed the variance, correlation coefficient and path. The results showed that M2 generation putative mutants showed diversity for the character of protein content in cowpea seeds. The protein content in cowpea seeds can be predicted through the character of plant height and number of branches.

2016 ◽  
Vol 7 (3) ◽  
pp. 187
Author(s):  
Eny Rolenti Togatorop ◽  
Syarifah Iis Aisyah ◽  
M. Rizal M. Damanik

<p>ABSTRACT<br />Mutation breeding such as gamma ray irradiation is one of strategy to increase genetic variability. The aim of this research was to indentify genetic variability, performance changes and to obtain putative mutant of Coleus blumei purple/green through gamma ray irradiation. The experiment design used was Randomized Complete Block with single factor and three replications. The gamma ray irradiation was given to shoot cuttings of C. blumei by fractionated irradiation dose: 0 Gy (control), 20+20 Gy, 22.5+22.5 Gy, 25+25 Gy and 27.5+27.5 Gy. The irradiated shoot cuttings were planted in field until MV3 generation. The result of this research showed that gamma ray irradiation on C.blumei purple/green produced the high genetic variability on number of leaves and number of branches i.e. 58.48% and 74.02% by 25+25 Gy dose and number of branches by 20+20 Gy and 22.5+22.5 Gy dose i.e. 53.47% and 68.97% respectively. Physically induced mutation by gamma ray irradiation produced 5 putative mutants respectively on colour and pattern of leaf changes in the following plants: 20+20.5, 20+20.7, 22.5+22.5.8, 25+25.5 and 25+25.8.<br />Keywords: fractionated irradiation, mutagen, ornamental plant, putative mutan, shoot cutting</p><p>ABSTRAK<br />Pemuliaan mutasi dengan iradiasi sinar gamma merupakan salah satu cara dalam meningkatkan keragaman genetik tanaman. Tujuan penelitian ini untuk mengidentifikasi keragaman genetik, perubahan penampilan dan mendapatkan mutan putatif pada tanaman Coleus blumei ungu/hijau melalui iradiasi sinar gamma. Penelitian menggunakan rancangan kelompok lengkap teracak (RKLT) faktor tunggal dengan 3 ulangan. Iradiasi sinar gamma diberikan terhadap stek pucuk C. blumei ungu/hijau dengan dosis terbagi yaitu: 0 Gy (kontrol), 20+20 Gy, 22.5+22.5 Gy, 25+25 Gy dan 27.5+27.5 Gy. Semua tanaman hasil iradiasi ditanam di lapangan sampai generasi MV3. Hasil penelitian menunjukkan bahwa pemberian iradiasi sinar gamma pada C. blumei ungu/hijau menghasilkan keragaman genetik yang cukup tinggi pada karakter jumlah daun dan jumlah cabang dengan nilai KKG masing-masing 58.48% dan 74.02% pada dosis 25+25 Gy serta karakter jumlah cabang dengan nilai KKG 53.47% dan 68.97% masing-masing pada dosis 20+20 gy dan 22.5+22.5 Gy. Mutasi induksi fisik dengan iradiasi sinar gamma pada C. blumei ungu/hijau<br />menghasilkan 5 mutan putatif berdasarkan perubahan warna dan corak daun yaitu pada tanaman: 20+20.5, 20+20.7, 22.5+22.5.8, 25+25.5 dan 25+25.8.<br />Kata kunci: iradiasi terbagi, mutagen, mutan putatif, stek pucuk, tanaman hias</p>


2020 ◽  
Vol 5 (1) ◽  
pp. 46
Author(s):  
Yukarie Ayu Wulandari ◽  
Sobir Sobir ◽  
Syarifah Iis Aisyah

Cowpea (V. unguiculata L) has great potential as a nutritious food as a substitute for soybeans because it contains sufficient protein and low fat content. The diversity of cowpea is low so that need to increase diversity through the mutation induction of gamma ray irradiation. The study was carried out in the experimental garden of Pasir Kuda PKHT of IPB in February - May 2018 using a design of augmented in the Complete Group Design in a Randomized. The study was carried out using 90 putative mutant genotypes of M2 generation as the test genotype and KM4 genotype as a comparison which was repeated 10 times. The results showed that the M2 generation putative mutants showed diversity in the qualitative and quantitative characters of cowpea. High genetic diversity is shown in the character of plant height, harvest period, number of seeds / pods and weight of cowpea seeds / plants and high broad mean heritability values obtained on the character of stem length, flowering age, number of seeds / pods and weight of beans / plant nuts arrears. The result of kinship analysis showed thirteen different putative mutant genotypes with KM4 genotypes, namely T6599P, T8028P, T7525P, T7551P, T7520P, T6574P, T6533P, T7058P, T6577P, T6591P, T7062P, T7069P and T6561.


Author(s):  
C. Vanniarajan ◽  
J. Souframanien ◽  
S. Anandhi Lavanya

Background: The urd bean variety MDU 1 has a duration of 70-75 days, bushy in nature and is susceptible to yellow mosaic virus. In order to develop a determinate type and improved batter quality, MDU 1 and VBN (Bg) 4 blackgram seeds were treated with different doses (100 Gy, 200 Gy, 300 Gy, 400 Gy and 500 Gy) of gamma rays. Methods: Uniform sized seeds treated with different mutagenic doses were raised in randomised block design which constitute M1 generation. Each plant was harvested individually and forwarded to M2 generation following plant to progeny row method. The determinate types were selected from M2 generation and forwarded to further generations. After attaining homozygosity in the advanced generation, the mutants were checked for its biochemical characters (Total solubule protein content analysed by kjeldahl method, albumin and globulin analysed by Lowery’s method, arabinose content analysed by Bial method. Result: The mutants ACM - 16 -011, ACM - 16 -015, ACM - 16 -018 were found to have an arabinose content of 8.28%, 8.98% and 8.14% respectively. All these mutants recorded more batter volume over the variety MDU 1. The albumin (%) and globulin (%) contents were also found at remarkably increased levels in the mutants. These mutants have the potential to develop a high quality variety of urd bean and therefore are very useful in breeding programme.


1996 ◽  
Vol 11 (3) ◽  
pp. 461-469 ◽  
Author(s):  
C YONEZAWA ◽  
T TANAKA ◽  
H KAMIOKA

1989 ◽  
Vol 12 (2) ◽  
pp. 115-134 ◽  
Author(s):  
DONALD W. THAYER ◽  
JAMES J. SHIEH ◽  
RONALD K. JENKINS ◽  
JOHN G. PHILLIPS ◽  
EUGEN WIERBICKI ◽  
...  

2005 ◽  
Vol 293 (1) ◽  
pp. 106-110 ◽  
Author(s):  
Takuya Kinoshita ◽  
Satoshi Seino ◽  
Yoshiteru Mizukoshi ◽  
Yohei Otome ◽  
Takashi Nakagawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document