scholarly journals ANALISIS KERAGAMAN DAN KEKERABATAN KACANG TUNGGAK (Vigna unguiculata L) GENERASI M2

2020 ◽  
Vol 5 (1) ◽  
pp. 46
Author(s):  
Yukarie Ayu Wulandari ◽  
Sobir Sobir ◽  
Syarifah Iis Aisyah

Cowpea (V. unguiculata L) has great potential as a nutritious food as a substitute for soybeans because it contains sufficient protein and low fat content. The diversity of cowpea is low so that need to increase diversity through the mutation induction of gamma ray irradiation. The study was carried out in the experimental garden of Pasir Kuda PKHT of IPB in February - May 2018 using a design of augmented in the Complete Group Design in a Randomized. The study was carried out using 90 putative mutant genotypes of M2 generation as the test genotype and KM4 genotype as a comparison which was repeated 10 times. The results showed that the M2 generation putative mutants showed diversity in the qualitative and quantitative characters of cowpea. High genetic diversity is shown in the character of plant height, harvest period, number of seeds / pods and weight of cowpea seeds / plants and high broad mean heritability values obtained on the character of stem length, flowering age, number of seeds / pods and weight of beans / plant nuts arrears. The result of kinship analysis showed thirteen different putative mutant genotypes with KM4 genotypes, namely T6599P, T8028P, T7525P, T7551P, T7520P, T6574P, T6533P, T7058P, T6577P, T6591P, T7062P, T7069P and T6561.

2020 ◽  
Vol 22 (2) ◽  
pp. 105
Author(s):  
Siti Hartati Yusida Saragih ◽  
Khairul Rizal ◽  
Kamsia Dorliana Sitanggang

<p>Breeding kara benguk with mutation induction techniques using gamma ray radiation is expected to produce genetic diversity. The purpose of the study is to determine the value of Lethal Dose 50 (LD50) and obtain the genetic diversity of the kara benguk plant. The research was conducted at PAIR BATAN and Agrotechnology experiment, Universitas Labuhanbatu from May-July 2020. The planting material used was kara benguk seeds. The method used was Randomized Complete Group Design (RCGD) with one factor which was dose of irradiation with six levels (0, 200, 250, 300, 350 and 400 Gy) and three replications. Each replication consisted of 20 plants, so there are a total of 360 experimental plants. The results showed that the value of LD50 kara benguk in 3 weeks after planting was 281,472 Gy. Gamma ray irradiation increases the high genetic diversity of plants and the number of leaves at a dose of 350 Gy.</p>


2021 ◽  
Vol 6 (1) ◽  
pp. 7
Author(s):  
Yukarie Ayu Wulandari ◽  
Sobir Sobir ◽  
Syarifah Iis Aisyah

Cowpea (V. unguiculata L) can be developed as a source of vegetable protein because it contains relatively high protein and high lysine. The protein content in seeds is an accumulation of character components that play a role in protein formation, whose relationship can be predicted using cross correlation and analysis coefficients. The study was carried out in the experimental garden of Pasir Kuda PKHT of IPB in February - May 2018. Protein analysis is carriedout in the Testing Laboratory of the Department of Agronomy and Horticulture, Faculty of Agriculture, IPB in June - July 2018. The study was conducted using 30 putative mutant test genotypes of M2 generation result from the mutation of gamma ray irradiation and KM4 genotype as a comparison which was repeated three times. The protein content of the seeds was analyzed using the Kjeldahl method and then analyzed the variance, correlation coefficient and path. The results showed that M2 generation putative mutants showed diversity for the character of protein content in cowpea seeds. The protein content in cowpea seeds can be predicted through the character of plant height and number of branches.


2019 ◽  
Vol 6 (1) ◽  
pp. 41
Author(s):  
Meynarti Sari Dewi Ibrahim ◽  
Enny Randriani ◽  
Laela Sari ◽  
Anne Nuraini

<p><em>High genetic diversity is one factor that determines the success of plant breeding. Mutation induction by gamma ray irradiation is one method to improve plant genetic diversity. This study aimed to 1) obtain growth regulators composition suitable in inducing embryogenic callus, 2) determine the effect of gamma ray irradiation on the growth and development of somatic embryos, and 3) obtain lethal dose (LD) <sub>20</sub> and <sub>50</sub> values in Robusta coffee  BP 436. The study was conducted at the Tissue Culture Laboratory, Industrial and Beverage Crops Research Institute,  from May 2017 to December 2018. Explants used were young leaves of Robusta coffee BP 436. Callus induction used ½ MS media with 2,4-D (4.52 μM) and 2-iP (0.00; 4.93; 9.86; 14.79; and 19.72 μM) treatment. Mutation induction was performed using gamma radiation dosed at 0, 10, 20, 30, 40, and 50 Gy treatments. The regeneration media was ½ MS containing GA<sub>3</sub> (0 and 1 mg/l). The study used a complete randomized design with 10 replications. The results showed the best combination of plant growth regulator to induce the callus was 2.4-D 4.52 μM + 2-iP 19.72 μM. The fresh weight of cultures was inhibited above 30 Gy, whereas the number of somatic embryos decreased at doses above 10 Gy. Addition of GA<sub>3</sub> 1 mg/l in regeneration media increased the number of somatic embryos in torpedo phase, but not in gamma irradiation exposed calluses. The LD<sub>20</sub> and LD<sub>50</sub> of Robusta coffee BP 436 are 16.81 and 28.52 Gy, respectively.</em></p>


2019 ◽  
Vol 20 (2) ◽  
pp. 463-467 ◽  
Author(s):  
EMI SUSILA ◽  
ARI SUSILOWATI ◽  
AHMAD YUNUS

Abstract. Susila E, Susilowati A, Yunus A. 2019. The morphological diversity of Chrysanthemum resulted from gamma ray irradiation. Biodiversitas 20: 463-467. Chrysanthemum is a popular ornamental plant. The high market demand makes breeders develop new cultivars to meet market preferences. One way to get superior varieties of Chrysanthemum is by using gamma ray mutation induction which will increase the morphological variations. The purpose of this study is to determine the Chrysanthemum’s morphological diversity resulted from gamma irradiation through morphological markers. This experimental research used a completely randomized design (CRD) with one factor, i.e. radiation doses: 0 Gy (control), 10 Gy, 15 Gy, and 20 Gy. The observations were carried out qualitatively and quantitatively. The data obtained were analyzed using the SPSS 15.0 and the NTSYS (Numerical Taxonomy and Multivariate Analysis System) 2.02 program. The results showed that increasing the dose of gamma irradiation inhibited plant growth. Irradiation at 10 Gy and 20 Gy produced the most color changes in flowers compared to other doses. The basic color of 0 Gy irradiation is purple. Irradiation at 10 Gy and 20 Gy produced dark purple and deep red. Quantitative data showed that the treatment of gamma ray irradiation significantly affected the leaf length, leaf width, stem diameter, stem length, and diameter of flowers. The irradiation also caused changes in shape and texture of the leaves. The dendrogram showed that 20 Gy irradiation resulted the most diverse morphology compared to the control, 10 Gy and 15 Gy.


2020 ◽  
Vol 2 (1) ◽  
pp. 31-45
Author(s):  
Fitri Yanti ◽  
Aslim Rasyad ◽  
Herman Herman

The objective of this research was to determine phenotypic variability of mung bean M2 and M3 Mutant populations resulted from gamma ray irradiation. The Field experiment was conducted by using a completely randomized design in which three populations including M2, M3 and the parent (M0) were planted in 2017. Each population was planted in a plot of 3 m x 2 m with planting space of 30 cm x 20 cm to obtain 100 individual plant per plot. Every population was repeated 5 times so to get  500 plants per population. Observations were collected on all individuals in the population including plant height, number of stem internodes, length of internode, number of primary branches, age of flowering plants, date of harvest, length of pods, number of filled pods, number of seeds per pod, number of seeds per plant, weight of seeds per plants, and weights of 100 seeds. The results showed that gamma ray irradiation produced mung bean plants with a similar date of harvest. It could be seen from mean values ​​which were not significantly different, the values ​​of diversity, and range were almost equal which indicates the diversity of M2, M3 and M0 populations was relatively similar to the control. M2 and M3 generation of mung bean have large and high quality seeds weighing more than 6.5 g/100 seeds. The homogeneity of variance (HOV) analysis showed that variance of all population of all parameters observed were not homogeny except for plant height, number of stem internode and weight of 100 seeds.


2008 ◽  
Vol 58 (3) ◽  
pp. 331-335 ◽  
Author(s):  
Hiroyasu Yamaguchi ◽  
Akemi Shimizu ◽  
Konosuke Degi ◽  
Toshikazu Morishita

2015 ◽  
Vol 2 (1) ◽  
pp. 26-32
Author(s):  
Syarifah Iis Aisyah ◽  
Yodi Marthin ◽  
M. Rizal M. Damanik

The objective of this study is to study the effect of gamma ray irradiation (15, 30, 45, and 60 gray (Gy) to determine Lethal Dose 50 (LD50) values, and to obtain new Coleus variances in a relatively short time. The study was conducted in a greenhouse at Cikabayan experimental field, Bogor Agricultural University, Darmaga, Bogor in May to July 2013. Gamma irradiation treatment significantly affected height, number of leaves, and number of nodes. Increasing the dose level of gamma irradiation tend to inhibit plant growth. LD50 for yellow/green, green/brown, variegated green/brown of Coleus blumei, and Coleus amboinicus Lour were 48.66, 65.2, 52.81, and 37.62 Gy respectively. C. amboinicus  irradiated at a dose level of 45 Gy had different leaf shapes compared to control. Keywords:  Coleus, gamma ray irradiation, LD50 values, ornamental plant, torbangun


2017 ◽  
Vol 1 (1) ◽  
pp. 49
Author(s):  
Siti Marwiyah ◽  
Heny Purnamawati ◽  
Pinni Iyunika Sembiring

Physical mutation induction by gamma ray irradiation can increase the genetik diversity to support the selection ofcertain characters in plant breeding. Varieties is the key to improving the productivity of kidney beans (Phaseolus vulgaris) in Indonesia. This study aimed to study the effect of physical mutation induction by gamma ray irradiation of the red bean genotypes Brast-1. The research was conducted from February to May 2016. The genetik material Brast genotype-1 was irradiated with four levels of gamma ray (55, 110, 165 and 220 Gy). Weight of 100 grains M1 at a dose of 55 Gy were significantly different from M0 is a positive change from the gamma ray irradiation treatment. Effect of gamma ray irradiation was indicated by the changing of the morphology of leaves, pods and seed color code of M2.Keywords: dose, change, genotype, M2 seed


2016 ◽  
Vol 7 (3) ◽  
pp. 187
Author(s):  
Eny Rolenti Togatorop ◽  
Syarifah Iis Aisyah ◽  
M. Rizal M. Damanik

<p>ABSTRACT<br />Mutation breeding such as gamma ray irradiation is one of strategy to increase genetic variability. The aim of this research was to indentify genetic variability, performance changes and to obtain putative mutant of Coleus blumei purple/green through gamma ray irradiation. The experiment design used was Randomized Complete Block with single factor and three replications. The gamma ray irradiation was given to shoot cuttings of C. blumei by fractionated irradiation dose: 0 Gy (control), 20+20 Gy, 22.5+22.5 Gy, 25+25 Gy and 27.5+27.5 Gy. The irradiated shoot cuttings were planted in field until MV3 generation. The result of this research showed that gamma ray irradiation on C.blumei purple/green produced the high genetic variability on number of leaves and number of branches i.e. 58.48% and 74.02% by 25+25 Gy dose and number of branches by 20+20 Gy and 22.5+22.5 Gy dose i.e. 53.47% and 68.97% respectively. Physically induced mutation by gamma ray irradiation produced 5 putative mutants respectively on colour and pattern of leaf changes in the following plants: 20+20.5, 20+20.7, 22.5+22.5.8, 25+25.5 and 25+25.8.<br />Keywords: fractionated irradiation, mutagen, ornamental plant, putative mutan, shoot cutting</p><p>ABSTRAK<br />Pemuliaan mutasi dengan iradiasi sinar gamma merupakan salah satu cara dalam meningkatkan keragaman genetik tanaman. Tujuan penelitian ini untuk mengidentifikasi keragaman genetik, perubahan penampilan dan mendapatkan mutan putatif pada tanaman Coleus blumei ungu/hijau melalui iradiasi sinar gamma. Penelitian menggunakan rancangan kelompok lengkap teracak (RKLT) faktor tunggal dengan 3 ulangan. Iradiasi sinar gamma diberikan terhadap stek pucuk C. blumei ungu/hijau dengan dosis terbagi yaitu: 0 Gy (kontrol), 20+20 Gy, 22.5+22.5 Gy, 25+25 Gy dan 27.5+27.5 Gy. Semua tanaman hasil iradiasi ditanam di lapangan sampai generasi MV3. Hasil penelitian menunjukkan bahwa pemberian iradiasi sinar gamma pada C. blumei ungu/hijau menghasilkan keragaman genetik yang cukup tinggi pada karakter jumlah daun dan jumlah cabang dengan nilai KKG masing-masing 58.48% dan 74.02% pada dosis 25+25 Gy serta karakter jumlah cabang dengan nilai KKG 53.47% dan 68.97% masing-masing pada dosis 20+20 gy dan 22.5+22.5 Gy. Mutasi induksi fisik dengan iradiasi sinar gamma pada C. blumei ungu/hijau<br />menghasilkan 5 mutan putatif berdasarkan perubahan warna dan corak daun yaitu pada tanaman: 20+20.5, 20+20.7, 22.5+22.5.8, 25+25.5 dan 25+25.8.<br />Kata kunci: iradiasi terbagi, mutagen, mutan putatif, stek pucuk, tanaman hias</p>


Author(s):  
Rossa Yunita ◽  
ISWARI S. DEWI ◽  
ENDANG GATI LESTARI ◽  
RAGAPADMI PURNAMANENGSIH ◽  
SUCI RAHAYU ◽  
...  

Abstract. Yunita R, Dewi IS, Lestari EG, Purnamanengsih R, Rahayu S, Mastur. 2020. Formation of upland rice drought-tolerant mutants by mutation induction and in vitro selection. Biodiversitas 21: 1476-1482. Increased production can be done by increasing the planting area, but the available land is sub-optimal land with drought stress. Drought-tolerant rice varieties are needed to utilize this land. To create drought-tolerant rice can use induction mutation and in vitro selection methods. This study aims to obtain tolerant upland rice mutants through mutation and in vitro selection. The parents used were Batutegi and Situpatenggang varieties. This research consisted of several main activities, namely callus induction, determination of LD 50% value ofPEG determination of LC 50% value of gamma-ray irradiation, mutation induction and in vitro selection, bud regeneration and acclimatization. The results of this study are mutant callus formed by gamma-ray irradiation at a dose of 24.68 Gy for Situpatenggang and 22.15 Gy for Batutegi (LD50) and selected on PEG media at a dose of 24.11% for Situpatenggang and 25.18% for Batutegi (LC50). The mutant callus regenerated on MS + BA 3 mg/L + Zeatin 0.1 mg/L produced 83 Situpatenggang shoots and 73 Batutegi shoots and successfully acclimatized were 52 Situpatenggang lines and 49 Batuteg linesBatutegi


Sign in / Sign up

Export Citation Format

Share Document