scholarly journals Analisis Pengaruh Kompensasi Impedansi Urutan Nol (Kzn) terhadap Kehandalan Sistem Proteksi Rele Jarak (Distance Relay) pada Penghantar Harapan Indah di Gardu Induk Plumpang

Author(s):  
Deni Almanda ◽  
Juniyanto Juniyanto

Pada saat terjadi gangguan hubung singkat di saluran transmisi Gardu Induk Plumpang, rele jarak berfungsi sebagai proteksi utama. Penelitian ini bertujuan untuk mengetahui pengaruh kompensasi impedansi urutan nol (kzn) terhadap kehandalan sistem proteksi rele jarak (distance relay) pada penghantar harapan indah di Gardu Induk Plumpang. Setting rele jarak yang didapatkan dari PT PLN (Persero) UPT Pulogadung disimulasikan menggunakan alat uji Omicron. Hasil simulasi gangguan hubung singkat satu fasa, gangguan hubung singkat dua fasa, dan gangguan hubung singkat tiga fasa menggunakan setting lama Z1 = 2.58 Ω, Z2 = 3.87 Ω, dan Z3 = 7.30 Ω, kZn = 0.93 Ω < -0.4° rele jarak tidak bekerja selektif, maka dilakukan resetting. Hasil resetting rele jarak yaitu Z1 = 2.58 Ω, Z2 = 3.87 Ω, dan Z3 = 7.30 Ω, kZn = 0.68 Ω < -0.6°. Setelah dilakukan resetting dan disimulasikan gangguan hubung singkat satu fasa, gangguan hubung singkat dua fasa, dan gangguan hubung singkat tiga fasa, rele jarak bekerja secara handal. Kesimpulannya kZn dapat mempengaruhi kehandalan sistem proteksi rele jarak pada penghantar harapan indah di Gardu Induk Plumpang.In the event of a short circuit in the transmission line of the Plumpang Substation, the distance relay serves as the main protection. This study aims to determine the effect of zero sequence impedance compensation (kzn) on the reliability of the distance relay protection system at the Harapan Indah conductor at the Plumpang Substation. The distance relay setting obtained from PT PLN (Persero) UPT Pulogadung was simulated using the Omicron test tool. Simulation results of single phase short circuit, two phase short circuit, and three phase short circuit using the old setting Z1 = 2.58 Ω, Z2 = 3.87 Ω, and Z3 = 7.30 Ω, kZn = 0.93 < -0.4° relay distance does not works selectively, then resetting is done. The results of resetting the distance relay are Z1 = 2.58 Ω, Z2 = 3.87 Ω, and Z3 = 7.30 Ω, kZn = 0.68 < -0.6°. After resetting and simulating single-phase short circuit, two phase short circuit, and three phase short circuit fault, the distance relay works reliably. In conclusion, kZn can affect the reliability of the distance relay protection system on the beautiful hope conductor at the Plumpang Substation.

2014 ◽  
Vol 521 ◽  
pp. 288-291
Author(s):  
Yu Sheng Quan ◽  
Xin Zhao ◽  
Hua Gui Chen ◽  
En Ze Zhou

Based on the method of symmetrical components of D, 11 and Y, o distribution transformer coupling two different effects of different magnetic circuit coupled to the three-phase system with a system-generated analysis and comparison. Analysis of the difference between the two groups of different connections on the transformer structure. Described in the single-phase short circuit fault clearing, 3n harmonic current suppression and affordability aspects of single-phase unbalanced load, D, ll coupling transformers are significantly better than Y,0 coupling transformer. This has necessarily important for the study of energy loss reduction.


2021 ◽  
Vol 11 (19) ◽  
pp. 9205
Author(s):  
Honggang Pan ◽  
Yunshi Wu ◽  
Zhiyuan Pang ◽  
Yanming Fu ◽  
Tianyu Zhao

Taking a 1000 MW turbine generator as the research object, the short-circuit fault in electrical disturbance is analyzed. Since it is very difficult to carry out fault analysis experiments and research on actual systems, simulation analysis is one of the more effective means of electrical fault diagnosis; the simulation’s results approach the actual behavior of the system and are ideal tools for power system analysis, and can provide an empirical basis for practical applications. The short-circuit fault model of the SIMULINK power system is built to analyze the two types of faults of generator terminals short-circuit and power grid short-circuit. The impact load spectrum, fault current and speed fluctuation between low-voltage rotors were extracted and analyzed. The conclusion is that the impact value of electromagnetic torque at the generator terminal is greater than that on the power grid side. The impact value of a two-phase short-circuit at the generator terminal is the largest, and that of a three-phase short-circuit on the power grid side is the smallest. The transient impulse current of a three-phase short-circuit at any fault point is greater than that of a two-phase short-circuit; the impulse current of the grid side short-circuit is much greater than that of the generator terminal short-circuit; the speed fluctuation and fluctuation difference caused by the three-phase short-circuit in the grid side are the largest. The alternating frequency of the transient electromagnetic force of the four kinds of faults avoids the natural frequency of the torsional vibration of the shaft system, and the torsional resonance of the shaft system in the time domain of the short-circuit fault will not appear. However, after the fault is removed, the residual small fluctuation torque in the system has a potential impact on the rotor system. This research shows an analysis of the structural integrity and safe operation of turbine generator units after a short-circuit fault, which can not only be applied to engineering practice, but also provide a theoretical basis for subsequent research.


Author(s):  
Aleksandr S. Serebryakov ◽  
Vladimir L. Osokin ◽  
Sergey A. Kapustkin

The article describes main provisions and relations for calculating short-circuit currents and phase currents in a three-phase traction transformer with a star-triangle-11 connection of windings, which feeds two single-phase loads in AC traction networks with a nominal voltage of 25 kilovolts. These transformers provide power to the enterprises of the agro-industrial complex located along the railway line. (Research purpose) The research purpose is in substantiating theoretical equations for digital intelligent relay protection in two-phase short circuits. (Materials and methods) It was found that since the sum of instantaneous currents in each phase is zero, each phase of the transformer works independently. We found that this significantly simplifies the task of analyzing processes with a two-phase short circuit. In this case, the problem of calculating short-circuit currents in the traction network can be simplified by reducing it to the calculation of an ordinary electric circuit with three unknown currents. (Results and discussion) The article describes equations for calculating short-circuit resistances for one phase of the transformer when connecting the secondary winding as a star or a triangle. The currents in the phases of the transformer winding at short circuit for the star-triangle-11 and star-star-with-ground schemes are compared. It was found that when calculating short-circuit currents, there is no need to convert the secondary winding of the traction transformer from a triangle to a star. (Conclusions) It was found that the results of the research can be used in the transition of relay protection systems from electromagnetic relays to modern high-speed digital devices, which will increase the operational reliability of power supply systems for traction and non-traction power consumers.


2020 ◽  
Vol 11 ◽  
pp. 11-17
Author(s):  
Gabriel Nicolae Popa ◽  
Corina Maria Diniș

Low-voltage three-phase induction motors are most often used in industrial electric drives. Electric motors must be protected by electric and/or electronic devices against: short-circuit, overloads, asymmetrical currents, two-phase voltage operation, under-voltage, and over-temperature. To design the electronic protection currents, voltages and temperature must be measured to determine whether they fall within normal limits. The electronic protection was design into low capacity PLC. The paper presents the designs and analysis of complex electronic protection for general purpose low-voltage three-phase induction motors. The electronic protection has Hall transducers and conversion electronic devices for AC currents to DC voltages, AC voltages to DC voltage, temperature to DC voltage, a low capacity PLC, switches, motor’s power contactors, and signalling lamps has been developed. Experiments with complex electronic protection, for different faults are presented. The proposed protection has the advantages of incorporating all usual protections future for the low-voltage three-phase induction motors.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 934
Author(s):  
Yanwen Wang ◽  
Le Wang ◽  
Sven G. Bilén ◽  
Yan Gao

Due to the working condition of low-voltage cabling from the mining flameproof movable substation to the loads of the mining face being poor, it is easy to cause various external mechanical damages to the cable sheaths. Furthermore, a single-phase earth leakage fault or short-circuit fault can occur when the low-voltage cable sheaths are damaged, and electric sparks caused by these faults can lead to a gas explosion. As the gas detonation time caused by the above faults is usually more than 5 ms, the high-speed interruption solid-state switch which controls the cables must cut off the current within 3 ms. This requires the action time of the solid-state switch to be less than 1 ms, and at the same time, the sampling and calculation time of the relay protection must be less than 2 ms. Based on these problems, this paper proposes the use of a high-speed solid-state circuit breaker (SSCB) topology at the neutral point of transformer, and analyzes the conduction mechanism and shut-off mechanism of the current of the SSCB. It presents an ultra-high-speed algorithm based on pattern recognition of single-phase earth leakage fault protection, and an ultra-high-speed algorithm of short-circuit fault which is based on the rate-of-change of the current. Finally, through computer simulation experiments and semi-physical simulation experiments, the feasibility of the above three technologies is verified to ensure that when a single-phase earth leakage fault or short-circuit fault occurs in the low-voltage cable, the solid-state switch which is installed in the mining flameproof movable substation will cut off the current within 3 ms.


Sign in / Sign up

Export Citation Format

Share Document