scholarly journals A Medium Voltage AC and DC Distributed Power Generation Testbed Deploying Transient Loads

Author(s):  
AN Johnston ◽  
DA Wetz ◽  
GK Turner

Microgrids have been studied considerably over the last decade. They are being uniquely designed and controlled in a variety of applications to supply countless different loads, many of which may operate in a transient manner. Given their isolated nature, ships are often treated as microgrids allowing much of the same theory to apply. Historically, both electric grids and ships have relied upon fossil fuel powered motors to spin generators that source the electric power they need. Microgrids can deploy a host of different distributed generation sources that are interconnected and controlled in real time to improve overall grid reliability and redundancy. The use of medium-voltage-direct-current (MVDC) power distribution is one possible solution to minimize power loss in the conductors and to reduce the power conversion requirement when high voltage loads are present. The non-continuous operation of loads may introduce harmonics into the power system that severely impact power quality. Avoiding this is critical and more must be understood for successful mitigation. Model development and validation is critical for successfully deploying new architectures and control strategies. To study the reliable operation and control of such a power system, as well as to validate the models being developed, the Pulsed Power and Energy Laboratory (PPEL) at the University of Texas at Arlington (UTA) has designed and installed a testbed that can be used to study a small microgrid deploying transient loads. The testbed, operating at power levels higher than 300 kW, utilizes distributed AC and DC power sources and loads operating at the 480 VAC, 4160 VAC, 1 kVDC, 6 kVDC, and 12 kVDC, respectively. The testbed is being virtually extended utilizing a hardware in the loop (HIL) simulator. This paper will discuss the design of the testbed, the test plan methodology, and the results collected so far.

2019 ◽  
Vol 9 (16) ◽  
pp. 3218 ◽  
Author(s):  
Qi Wang ◽  
Hongru Wang ◽  
Lei Zhu ◽  
Xingquan Wu ◽  
Yi Tang

Demand response (DR) is widely accepted as a feasible and potential solution to improve the operation of the power system. In this paper, an economical and practical DR system architecture based on internet and Internet of things (IoT) communication technologies is discussed to achieve wide-area DR control without using an expensive metering infrastructure. Multi agents are introduced with respective control strategies to implement multi-time-scale control in a power system. In order to support quick DR strategies, a novel smart terminal design for the proposed DR system is described with functions of local parameter detection and action. The practicality of the proposed system was validated on a developed hardware-in-loop co-simulation platform.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2319 ◽  
Author(s):  
Mohammed Azharuddin Shamshuddin ◽  
Felix Rojas ◽  
Roberto Cardenas ◽  
Javier Pereda ◽  
Matias Diaz ◽  
...  

Increase in global energy demand and constraints from fossil fuels have encouraged a growing share of renewable energy resources in the utility grid. Accordingly, an increased penetration of direct current (DC) power sources and loads (e.g., solar photovoltaics and electric vehicles) as well as the necessity for active power flow control has been witnessed in the power distribution networks. Passive transformers are susceptible to DC offset and possess no controllability when employed in smart grids. Solid state transformers (SSTs) are identified as a potential solution to modernize and harmonize alternating current (AC) and DC electrical networks and as suitable solutions in applications such as traction, electric ships, and aerospace industry. This paper provides a complete overview on SST: concepts, topologies, classification, power converters, material selection, and key aspects for design criteria and control schemes proposed in the literature. It also proposes a simple terminology to identify and homogenize the large number of definitions and structures currently reported in the literature.


2002 ◽  
Vol 26 (4) ◽  
pp. 191-210 ◽  
Author(s):  
Anca D. Hansen ◽  
Poul Sørensen ◽  
Frede Blaabjerg ◽  
John Becho

This paper describes a dynamic model of a wind farm and its nearest utility grid. It is intended to use this model in studies addressing the dynamic interaction between a wind farm and a power system, both during normal operation of the wind farm and during transient grid fault events. The model comprises the substation where the wind farm is connected, the internal power collection system of the wind farm, the electrical, mechanical and aerodynamic models for the wind turbines, and a wind model. The integrated model is built to enable the assessment of power quality and control strategies. It is implemented in the commercial dedicated power system simulation tool DIgSILENT.


Author(s):  
Satya PRAKASH ◽  
Manoj HANS ◽  
Vikas THORAT

The power distribution network has grown complex and vulnerable as it increases its demand. The system's reliability has become a prominent factor for the end-users, although the continuity of supply in the distribution network still remains a challenge. In order to achieve the same distribution, automation came into the picture. The term “Distribution Automation” usually refers to an advanced switching system, which works as a subsystem of the existing network. The purpose of the subsystem is to offer real-time observation and control in distribution networks and electricity market operations. Consequently, the development of an autonomous system for isolating failures and restoring power for the distribution of LV (low voltage)/MV (medium voltage) can be an attractive solution for improving energy facilities' reliability. Advanced management techniques are devices and algorithms used to analyze, diagnose, and predict conditions in a distribution network, as well as to identify and take appropriate corrective actions to eliminate, mitigate, and prevent power outages and power quality problems. To demonstrate the model, we used a PIC16F877, CT microcontroller, and a power supply unit.


Author(s):  
Hisayoshi Sugiyama

Abstract Pulsed power network is proposed for reliable and low loss electrical power distribution among various type of power sources and consumers. The proposed scheme is a derivative of power packet network so far investigated that has affinity with dispersion type power sources and has manageability of energy coloring in the process of power distribution. In addition to these advantages, the proposed scheme has system reliability and low loss property because of its intelligent operation performed by individual nodes and direct relaying by power routers. In the proposed scheme, power transmission is decomposed into a series of electrical pulses placed at specified power slots in continuous time frames that are synchronized over the network. The power slots are pre-reserved based on information exchanges among neighboring nodes following inherent algorithm of the proposed scheme. Because of this power slots reservation based on decentralized intelligence, power pulses are directly transmitted from various power sources to consumers with the least power dissipation even though a partial failure occurs in the network. The network operations with the proposed scheme is simulated to confirm the algorithms for the power slots reservation and to evaluate the power network capacity.


Sign in / Sign up

Export Citation Format

Share Document