Ad26.COV2.S viral vector vaccine’s safety and immunogenicity: A review of literature

Author(s):  
Sherry Eskander

COVID-19 is a respiratory infectious disease that spreads through droplets. This disease has brought immense changes that impacted all countries around the world and the healthcare system in many ways. Developing an effective vaccine has been a high priority and clinical trials are continuously conducted to improve their efficacy. There are two current competing forms of the vaccine: the first is mRNA vaccines, where they act as a carrier for immunological information encoding for the antigen (spike proteins) and induce an immune response without interacting with the genome. Although they have an effectiveness of 95%, they do require two doses to be fully effective. On the other hand, viral vector-based vaccines use a vector to deliver the genetic code for the antigen and, like a normal infection, uses the body cell’s machinery to produce more antigen, triggering an immune response.  Many clinical trials are being done to improve and evaluate its efficacy as this vaccine provides substantial potential advantages, one of which includes requiring only one dosage to be vaccinated to reach greater effectiveness in inducing antibody and CD4 T cells production. In consideration of the WHO SAGE Roadmap for vaccine prioritization, the aim of this study is to provide a review of the current literature and clinical trials being conducted on the viral vector vaccine Ad26.COV2.S’s safety and immunogenicity. In addition, it assesses potential future directions, implications and the substantial benefits towards the health care system and at-high-risk populations.

Retrovirology ◽  
2012 ◽  
Vol 9 (Suppl 2) ◽  
pp. P301
Author(s):  
R Tober ◽  
Z Banki ◽  
A Ejaz ◽  
A Muik ◽  
L Egerer ◽  
...  

2014 ◽  
Vol 30 (S1) ◽  
pp. A244-A244
Author(s):  
Janine Kimpel ◽  
Reinhard Tober ◽  
Zoltan Banki ◽  
Lisa Egerer ◽  
Alexander Muik ◽  
...  

RMD Open ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. e002019
Author(s):  
Theerada Assawasaksakul ◽  
Seelwan Sathitratanacheewin ◽  
Preeyaporn Vichaiwattana ◽  
Nasamon Wanlapakorn ◽  
Yong Poovorawan ◽  
...  

Since the COVID-19 pandemic, CoronaVac, an inactivated SARS-CoV-2 vaccine, has been widely deployed in several countries for emergency use. However, the immunogenicity of the inactivated vaccine was relatively lower when compared to other vaccine types and was even more attenuated in autoimmune patients with rheumatic disease. A third-dose SARS-CoV-2 vaccination in immunosuppressed population is recommended in order to improve immune response. However, the data were limited to those initially received mRNA or viral vector SARS-CoV-2 vaccine. Thus, we aimed to describe the safety, reactogenicity and immunogenicity of patients with systemic lupus erythematosus (SLE) who received a heterogenous booster SARS-CoV-2 vaccine following the initial CoronaVac inactivated vaccine series. Our findings support that the third booster dose of mRNA or viral vector vaccine following the inactivated vaccine is well tolerated and elicited a substantial humoral and cellular immune response in inactive patients with SLE having maintenance immunosuppressive therapy without interruption of immunosuppressive medications.


2014 ◽  
Vol 3 (1) ◽  
pp. 10 ◽  
Author(s):  
Yongneng Luo ◽  
Limin Jiang ◽  
Zi'an Mao

<p>  Hepatitis C virus infects nearly 3% of the global population, and spreads to 3-4 million new people annually. HCV infection is a leading cause of liver cirrhosis, hepatocellular carcinoma, and end-stage liver diseases and causes liver-related death in more than 300,000 people each year. Unfortunately, there is currently no vaccine for HCV prevention (prophylactic vaccine) or treatment (therapeutic vaccine). Circulating HCV is genetically diverse, and therefore a broadly effective vaccine must target conserved T- and B-cell epitopes of the virus and induce strong cross-reactive CD4+/CD8+ T-cell and neutralizing antibody responses in preventing or clearing HCV infection. So far, a few of vaccine development approaches are successful and some of the HCV vaccine candidates have reached human clinical trials, including those modalities mainly based on recombinant proteins (envelope proteins and core protein subunit), synthetic peptides, DNA (plasmid) and viral vectors (virosome). Encouraging results were obtained for those HCV vaccine formulations consisting of prime-boost regimen involving a live recombinant viral vector vaccine alone or in combination with DNA or subunit vaccine. Among several other vaccine strategies under preclinical development, the most promising one is virus like particle based vaccine that will be moving into human studies soon.</p>


2012 ◽  
Vol 11 (9) ◽  
pp. 570-576 ◽  
Author(s):  
Stephane Lemiere ◽  
Francisco Perozo ◽  
Blandine de Saint-Vis ◽  
Jennifer Diasparra ◽  
Arnaud Carlotti ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Rajashri Bezbaruah ◽  
Pobitra Borah ◽  
Bibhuti Bhushan Kakoti ◽  
Nizar A. Al-Shar’I ◽  
Balakumar Chandrasekaran ◽  
...  

Severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, arose at the end of 2019 as a zoonotic virus, which is the causative agent of the novel coronavirus outbreak COVID-19. Without any clear indications of abatement, the disease has become a major healthcare threat across the globe, owing to prolonged incubation period, high prevalence, and absence of existing drugs or vaccines. Development of COVID-19 vaccine is being considered as the most efficient strategy to curtail the ongoing pandemic. Following publication of genetic sequence of SARS-CoV-2, globally extensive research and development work has been in progress to develop a vaccine against the disease. The use of genetic engineering, recombinant technologies, and other computational tools has led to the expansion of several promising vaccine candidates. The range of technology platforms being evaluated, including virus-like particles, peptides, nucleic acid (DNA and RNA), recombinant proteins, inactivated virus, live attenuated viruses, and viral vectors (replicating and non-replicating) approaches, are striking features of the vaccine development strategies. Viral vectors, the next-generation vaccine platforms, provide a convenient method for delivering vaccine antigens into the host cell to induce antigenic proteins which can be tailored to arouse an assortment of immune responses, as evident from the success of smallpox vaccine and Ervebo vaccine against Ebola virus. As per the World Health Organization, till January 22, 2021, 14 viral vector vaccine candidates are under clinical development including 10 nonreplicating and four replicating types. Moreover, another 39 candidates based on viral vector platform are under preclinical evaluation. This review will outline the current developmental landscape and discuss issues that remain critical to the success or failure of viral vector vaccine candidates against COVID-19.


2018 ◽  
Vol 63 (2) ◽  
pp. 368-374
Author(s):  
Guanbo Wang ◽  
Longzheng Yu ◽  
Artemis Efstratiou ◽  
Paul Franck Adjou Moumouni ◽  
Mingming Liu ◽  
...  

AbstractIn the present study, we have investigated the protective effect of a heterologous prime-boost strategy with priming plasmid DNA followed by recombinant adenovirus, both expressing BmAMA1, againstBabesia microtiinfection. Four groups consisting of 3 hamsters per group were immunized with pBmAMA1/Ad5BmAMA1, pNull/Ad5BmAMA1, pBmAMA1/Ad5Null and pNull/Ad5Null, followed by challenge infection withB.microti. Our results showed that hamsters immunized with plasmid and adenovirus expressing BmAMA1 developed a robust IgG and IgG2a antibody response against BmAMA1, suggesting the DNA vaccine or viral vector vaccine tend to induce a Th1-biased response. Compared to the control hamsters, the hamsters vaccinated either with the prime-boost strategy or one of the two “vaccines” exhibited no significant protection againstB.microtichallenge. Although a slight difference in terms of parasitemia and hematocrit values at days 14–16 post challenge infection was observed, no other statistical difference was detected. Our results indicate that the prime-boost vaccination strategy of injection of plasmid and adenovirus expressing BmAMA1 is not efficient in protecting againstB.microtiinfection.


2015 ◽  
Vol 46 (1) ◽  
pp. 114-118 ◽  
Author(s):  
Kaissar Tabynov ◽  
Sholpan Ryskeldinova ◽  
Zhailaubay Kydyrbayev ◽  
Abylai Sansyzbay

ABSTRACT: The present study provides the first information about the safety of a new influenza viral vector vaccine expressing the Brucella ribosomal protein L7/L12 or Omp16 containing the adjuvant Montanide Gel01 in pregnant heifers. Immunization of pregnant heifers was conducted via the conjunctival (n=10) or subcutaneous (n=10) route using cross prime and booster vaccination schedules at an interval of 28 days. The vector vaccine was evaluated in comparison with positive control groups vaccinated with B. abortus S19 (n=10) or B. abortus RB51 (n=10) and a negative (PBS+Montanide Gel01; n=10) control group. Clinical studies, thermometry, assessment of local reactogenicity and observation of abortion showed that the vector vaccine via the conjunctival or subcutaneous route was completely safe for pregnant heifers compared to the commercial vaccines B. abortus S19 or B. abortus RB51. The only single adverse event was the formation of infiltration at the site of subcutaneous injection; this reaction was not observed for the conjunctival route.


2009 ◽  
Vol 182 (5) ◽  
pp. 2573-2577 ◽  
Author(s):  
Wolfgang Kastenmuller ◽  
Georg Gasteiger ◽  
Leon Stross ◽  
Dirk H. Busch ◽  
Ingo Drexler

Sign in / Sign up

Export Citation Format

Share Document