scholarly journals Surface Observation and Roughness Analysis of TiO2, Al2O3 Thin Films Prepared by Ion Beam Processing Method Using Atomic Force Microscope.

1996 ◽  
Vol 62 (6) ◽  
pp. 876-880
Author(s):  
Ektessabi A. M. ◽  
Hiroyuki KIMURA ◽  
Yoshiaki KAKINO
2000 ◽  
Vol 655 ◽  
Author(s):  
C. S. Ganpule ◽  
A. L. Roytburd ◽  
V. Nagarajan ◽  
A. Stanishevsky ◽  
J. Melngailis ◽  
...  

AbstractFocused ion beam milling was used to fabricate ferroelectric islands in Pb-Zr-Ti-O thin films. The islands ranged in size from 200μm×200μm to 0.3μm×0.3μm. The inverse piezoelectric effect was studied in these islands as a function of their size by tracking the surface displacement of the top electrode of the island (under an applied electric field) using an atomic force microscope (AFM). It was found that there was a substantial increase in the piezoresponse as the size of the island decreased below 100μm×100μm. This increase was attributed to the elastic deformation of the substrate.


2022 ◽  
Author(s):  
Sanjeev Kumar Kanth ◽  
Anjli Sharma ◽  
Byong Chon Park ◽  
Woon Song ◽  
Hyun Rhu ◽  
...  

Abstract We have constructed a new nanomanipulator (NM) in a field emission scanning electron microscope (FE-SEM) to fabricate carbon nanotube (CNT) tip to precisely adjust the length and attachment angle of CNT onto the mother atomic force microscope (AFM) tip. The new NM is composed of 2 modules, each of which has the degree of freedom of three-dimensional rectilinear motion x, y and z and one-dimensional rotational motion θ. The NM is mounted on the stage of a FE-SEM. With the system of 14 axes in total which includes 5 axes of FE-SEM and 9 axes of nano-actuators, it was possible to see CNT tip from both rear and side view about the mother tip. With the help of new NM, the attachment angle error could be reduced down to 0º as seen from both the side and the rear view, as well as, the length of the CNT could be adjusted with the precision using electron beam induced etching. For the proper attachment of CNT on the mother tip surface, the side of the mother tip was milled with focused ion beam. In addition, electron beam induced deposition was used to strengthen the adhesion between CNT and the mother tip. In order to check the structural integrity of fabricated CNT, transmission electron microscope image was taken which showed the fine cutting of CNT and the clean surface as well. Finally, the performance of the fabricated CNT tip was demonstrated by imaging 1-D grating and DNA samples with atomic force microscope in tapping mode.


Nature ◽  
1992 ◽  
Vol 359 (6391) ◽  
pp. 133-135 ◽  
Author(s):  
R. M. Overney ◽  
E. Meyer ◽  
J. Frommer ◽  
D. Brodbeck ◽  
R. Lüthi ◽  
...  

2010 ◽  
Vol 40 (5) ◽  
pp. 294 ◽  
Author(s):  
Ki-Ho Park ◽  
Hyun-Joo Yoon ◽  
Su-Jung Kim ◽  
Gi-Ja Lee ◽  
Hun-Kuk Park ◽  
...  

2004 ◽  
Vol 13 (5) ◽  
pp. 977-982 ◽  
Author(s):  
Q He ◽  
W M Huang ◽  
M H Hong ◽  
M J Wu ◽  
Y Q Fu ◽  
...  

2008 ◽  
Vol 8 (9) ◽  
pp. 4757-4760 ◽  
Author(s):  
Yong-il Kim ◽  
Hyunsook Kim ◽  
Haiwon Lee

AMF anodization lithography was performed on organic thin films with conducting polymers which is poly(3,4-ethylenedioxythiophene). The conductivity of PEDOT thin films was changed by different dopants and organic solvents. Two different dopants are poly(4-styrenesulfonate) and di(2-ethylhexyl)-sulfosuccinate. Also, DMF and IPA were used to prepare the PEDOT thin films doped with PSS and DEHS on silicon surface. The conductivities of these PEDOT variants were compared by obtaining their I–V curves between tip and thin films using AFM. Silicon oxide nanopatterns with higher aspect ratios can be obtained from the films with higher conductivity.


Sign in / Sign up

Export Citation Format

Share Document