Ion-beam-sputter deposited titanium nitride thin films for conductive atomic force microscope probes

2013 ◽  
Vol 529 ◽  
pp. 317-321 ◽  
Author(s):  
Po-Jui Su ◽  
Bernard Haochih Liu
2001 ◽  
Vol 08 (06) ◽  
pp. 689-692
Author(s):  
SHAHZAD NASEEM

Nb thin films have been prepared with e-beam evaporation under UHV conditions, and by RF magnetron sputtering. Al thin films were deposited by resistive heating in the UHV chamber. The preparation of these films and the trilayers of Nb/AlO x /Nb are intended for their use in Josephson junctions. Surface studies of these films are undertaken by using an atomic force microscope in the noncontact mode. These studies have revealed that the sputter-deposited Nb film surface is smoother than that of the UHV e-beam evaporated with R rms values of 3.5 and 4.0 nm respectively. Al thin films have a very smooth surface, with an R rms value of only 0.9 nm. Consequently, UHV-evaporated Nb thin films deposited on top of Al thin films are smoother, with a surface roughness of 1.8 nm.


2000 ◽  
Vol 655 ◽  
Author(s):  
C. S. Ganpule ◽  
A. L. Roytburd ◽  
V. Nagarajan ◽  
A. Stanishevsky ◽  
J. Melngailis ◽  
...  

AbstractFocused ion beam milling was used to fabricate ferroelectric islands in Pb-Zr-Ti-O thin films. The islands ranged in size from 200μm×200μm to 0.3μm×0.3μm. The inverse piezoelectric effect was studied in these islands as a function of their size by tracking the surface displacement of the top electrode of the island (under an applied electric field) using an atomic force microscope (AFM). It was found that there was a substantial increase in the piezoresponse as the size of the island decreased below 100μm×100μm. This increase was attributed to the elastic deformation of the substrate.


2016 ◽  
Vol 185 ◽  
pp. 295-298 ◽  
Author(s):  
Lin-Ao Zhang ◽  
Hao-Nan Liu ◽  
Xiao-Xia Suo ◽  
Shuo Tong ◽  
Ying-Lan Li ◽  
...  

2022 ◽  
Author(s):  
Sanjeev Kumar Kanth ◽  
Anjli Sharma ◽  
Byong Chon Park ◽  
Woon Song ◽  
Hyun Rhu ◽  
...  

Abstract We have constructed a new nanomanipulator (NM) in a field emission scanning electron microscope (FE-SEM) to fabricate carbon nanotube (CNT) tip to precisely adjust the length and attachment angle of CNT onto the mother atomic force microscope (AFM) tip. The new NM is composed of 2 modules, each of which has the degree of freedom of three-dimensional rectilinear motion x, y and z and one-dimensional rotational motion θ. The NM is mounted on the stage of a FE-SEM. With the system of 14 axes in total which includes 5 axes of FE-SEM and 9 axes of nano-actuators, it was possible to see CNT tip from both rear and side view about the mother tip. With the help of new NM, the attachment angle error could be reduced down to 0º as seen from both the side and the rear view, as well as, the length of the CNT could be adjusted with the precision using electron beam induced etching. For the proper attachment of CNT on the mother tip surface, the side of the mother tip was milled with focused ion beam. In addition, electron beam induced deposition was used to strengthen the adhesion between CNT and the mother tip. In order to check the structural integrity of fabricated CNT, transmission electron microscope image was taken which showed the fine cutting of CNT and the clean surface as well. Finally, the performance of the fabricated CNT tip was demonstrated by imaging 1-D grating and DNA samples with atomic force microscope in tapping mode.


Nature ◽  
1992 ◽  
Vol 359 (6391) ◽  
pp. 133-135 ◽  
Author(s):  
R. M. Overney ◽  
E. Meyer ◽  
J. Frommer ◽  
D. Brodbeck ◽  
R. Lüthi ◽  
...  

1992 ◽  
Vol 104-107 ◽  
pp. 1847-1850 ◽  
Author(s):  
Michael A. Russak ◽  
Christopher V. Jahnes ◽  
Erik Klokholm ◽  
Bojan Petek

Sign in / Sign up

Export Citation Format

Share Document