scholarly journals Analytical study on stability of microspheres in syntactic foams structure under hydrostatic compression

2020 ◽  
Vol S-I (2) ◽  
pp. 119-124
Author(s):  
P. Dodonov ◽  
◽  
A. Ryzhkin ◽  

This paper analyses prediction methods for failure pressure of microspheres in the structure of syntactic foams, discussing several micromechanical models. The solutions were obtained as per linear elasticity theory and finite-element method. It was investigated how geometric and physical & mechanical characteristic of syntactic foams depend on its components. Pressure failure is much lower if the boundary of the medium is close to the inclusions. This paper suggests an analytical model that yielded conservative estimate of critical pressure for microspheres.

Author(s):  
Neander Berto Mendes ◽  
Lineu José Pedroso ◽  
Paulo Marcelo Vieira Ribeiro

ABSTRACT: This work presents the dynamic response of a lock subjected to the horizontal S0E component of the El Centro earthquake for empty and completely filled water chamber cases, by coupled fluid-structure analysis. Initially, the lock was studied by approximation, considering it similar to the case of a double piston coupled to a two-dimensional acoustic cavity (tank), representing a simplified analytical model of the fluid-structure problem. This analytical formulation can be compared with numerical results, in order to qualify the responses of the ultimate problem to be investigated. In all the analyses performed, modeling and numerical simulations were done using the finite element method (FEM), supported by the commercial software ANSYS.


Author(s):  
Xinfang Zhang ◽  
Allan Okodi ◽  
Leichuan Tan ◽  
Juliana Leung ◽  
Samer Adeeb

Abstract Coating and cathodic protection degradation can result in the generation of several types of flaws in pipelines. With the increasing number of aging pipelines, such defects can constitute serious concerns for pipeline integrity. When flaws are detected in pipelines, it is extremely important to have an accurate assessment of the associated failure pressure, which would inform the appropriate remediation decision of repairing or replacing the defected pipelines in a timely manner. Cracks-in-corrosion (CIC) represent a class of defect, for which there are no agreed upon method of assessment, with no existing analytical or numerical models to predict their failure pressures. This paper aims to create a set of validated numerical finite element analysis models that are suitable for accurately predicting the failure pressure of 3D cracks-in-corrosion defects using the eXtended Finite Element Method (XFEM) technique. The XFEM for this study was performed using the commercially available software package, ABAQUS Version 6.19. Five burst tests of API 5L X60 specimens with different defect depths (varying from 52% to 66%) that are available in the literature were used to calibrate the XFEM damage parameters (the maximum principal strain and the fracture energy). These parameters were varied until a reasonable match between the numerical results and the experimental measurements was achieved. Symmetry was used to reduce the computation time. A longitudinally oriented CIC defect was placed at the exterior of the pipe. The profile of the corroded area was assumed to be semi-elliptical. The pressure was monotonically increased in the XFEM model until the crack or damage reached the inner surface of the pipe. The results showed that the extended finite element predictions were in good agreement with the experimental data, with an average error of 5.87%, which was less conservative than the reported finite element method predictions with an average error of 17.4%. Six more CIC models with the same pipe dimension but different crack depths were constructed, in order to investigate the relationship between crack depth and the failure pressure. It was found that the failure pressure decreased with increasing crack depth; when the crack depth exceeded 75% of the total defect depth, the CIC defect could be treated as crack-only defects, since the failure pressure for the CIC model approaches that for the crack-only model for ratios of the crack depth to the total defect depth of 0.75 and 1. The versatility of several existing analytical methods (RSTRENG, LPC and CorLAS) in predicting the failure pressure was also discussed. For the corrosion-only defects, the LPC method predicted the closest failure pressure to that obtained using XFEM (3.5% difference). CorLAS method provided accurate results for crack-only defects with 7% difference. The extended finite element method (XFEM) was found to be very effective in predicting the failure pressure. In addition, compared to the traditional Finite Element Method (FEM) which requires extremely fine meshes and is impractical in modelling a moving crack, the XFEM is computationally efficient while providing accurate predictions.


Author(s):  
Xinfang Zhang ◽  
Meng Lin ◽  
Allan Okodi ◽  
Leichuan Tan ◽  
Juliana Leung ◽  
...  

Abstract Cracks and corrosion in pipelines can occur simultaneously, representing a hybrid defect known as cracks in corrosion (CIC), which is often difficult to model using the available assessment codes or methods. As a result, detailed modeling of CIC has not been studied extensively. In this study, the extended finite element method (XFEM) has been applied to predict the failure pressures of CIC defects in API 5L Grade X42 and X52 pipes. The pipes were only subjected to internal pressure and the XFEM models were validated using full-scale burst tests available in the literature. Several CIC models with constant total defect depths (55%, and 60% of wall thickness) were constructed to investigate the effect of the initial crack depth on the failure pressure. The failure criterion was defined when wall penetration occurred due to crack growth, i.e., the instance the crack reached the innermost element of the pipe wall mesh. It was observed that for shorter cracks, the failure pressure decreased with the increase of the initial crack depth. The results indicated that the CIC defect could be treated as crack-only defects when the initial crack depth exceeded 50% of the total defect depth. However, for longer cracks, the initial crack depth was found to have a negligible effect on the failure pressure, implying that the CIC defect could be treated as either a crack or a corrosion utilizing the available assessment methods.


2010 ◽  
Vol 24-25 ◽  
pp. 97-102 ◽  
Author(s):  
Dominique Choqueuse ◽  
Peter Davies ◽  
Dominique Perreux ◽  
Laurent Sohier ◽  
Jean Yves Cognard

Ultra Deep offshore oil exploitation (down to 3000 meters depth) presents new challenges to offshore engineering and operating companies. Flow assurance and particularly the selection of insulation materials to be applied to pipe lines are of primary importance, and are the focus of much industry interest for deepwater applications. Polymeric and composite materials, particularly syntactic foams, are now widely used for this application, so the understanding of their behavior under extreme conditions is essential. These materials, applied as a thick coating (up to 10-15 cm), are subjected in service to: - high hydrostatic compression (up to 30 MPa) - severe thermal gradients (from 4°C at the outer surface to 150°C at the inner wall), and to high bending and shear stresses during installation. Damageable behavior of syntactic foam under service conditions has been observed previously [1] and may strongly affect the long term reliability of the system (loss of thermal properties).This study is a part of a larger project aiming to model the in-service behavior of these structures. For this purpose it is important to identify the constituent mechanical properties correctly [2, 3]. A series of tests has been developed to address this point, which includes: - hydrostatic compression - shear loading using a modified Arcan fixture This paper will describe the different test methods and present results obtained for different types of syntactic foams.


2013 ◽  
Vol 395-396 ◽  
pp. 55-59 ◽  
Author(s):  
Wei Zeng ◽  
Yi Jiang

The failure analysis of a fly through frangible canister cover is studied based on transient dynamics via the finite element method. The cover, which is fabricated with five plan-liked parts, is cohesively bonded together forming several weak paths. Five test specimens are designed according to the length of bonded fiber cloth. The cover is subjected to an impulsive blast and the failure process is obtained and analyzed. The failure pressure and time are determined at different cloth length. The result shows that the failure pressure and the corresponding time rise as the length of bonding layer increases.


Author(s):  
Anh Tuan Nguyen ◽  
Van Dung Tran

The paper aims to investigate the relationship between factors which have the impacts on the tunnel and the ground and establish formulas to calculate the correlation of the passive failure pressure in front of tunnel face in the vertical and horizontal directions by using the Finite Element Method (FEM).


Author(s):  
Dareen AL Salamah ◽  
Ghandi Jahjah ◽  
Ihsan Al Tarsh

— The strength of reinforced concrete beams is reduced to high extent when openings are created in their webs, so it is necessary to strengthen these beams by any modern strengthening methods to restore the strength of the beams before openings are created in their webs to continue in use of these beams. Analytical study is presented in this research to study CFRP strengthening effect around created opening in reinforced concrete beams under torsion and bending. The research depends on finite element method using Ansys 15. It is used SOLID65 to model concrete beam, SOLID 185 to model CFRP, supports and steel arms, and LINK 181 for long steel and stripes. Then analytical model is built to model reinforced concrete beams. This model gives results which are closed to experimental results.


Sign in / Sign up

Export Citation Format

Share Document