scholarly journals Numerical simulation of acoustic signal propagation in underwater acoustic duct

2021 ◽  
Vol 2 (396) ◽  
pp. 122-133
Author(s):  
F. Legusha ◽  
◽  
Yu. Popov ◽  

Object and purpose of research. The progress in numerical simulation methods significantly widens the capabilities of theoretical analysis in the tasks requiring extensive calculations and input data sets, like sound propagation at sea. This paper discusses the feasibility of a numerical model describing the physics of acoustic signal propagation in a deep-water channel. Materials and methods. Acoustic signal calculation is performed as per the ray-path theory with a numerical model taking into account depth-wise variations of sound velocity and seabed parameters. Main results. It was shown that depending on the vertical distribution of sound speed, the source depth and distance, the acoustic wave propagation direction can change over significant range of angles the in vertical plane. In this regard it is advisable to calculate the real target force of an object of complex geometry not only from heading angle in horizontal plane but also in terms of the possible range of angles in the vertical plane. Conclusion. Model-analyzed angles range of long-range wave propagation may be used for change estimation of object target force characteristics. Practical significance of the study lies in improving the methods of calculation of the real target force of complex shape objects in terms of state-of the art capabilities of simulating the propagation of acoustic signals conditions in the ocean.

Acta Acustica ◽  
2020 ◽  
Vol 5 ◽  
pp. 3
Author(s):  
Aida Hejazi Nooghabi ◽  
Quentin Grimal ◽  
Anthony Herrel ◽  
Michael Reinwald ◽  
Lapo Boschi

We implement a new algorithm to model acoustic wave propagation through and around a dolphin skull, using the k-Wave software package [1]. The equation of motion is integrated numerically in a complex three-dimensional structure via a pseudospectral scheme which, importantly, accounts for lateral heterogeneities in the mechanical properties of bone. Modeling wave propagation in the skull of dolphins contributes to our understanding of how their sound localization and echolocation mechanisms work. Dolphins are known to be highly effective at localizing sound sources; in particular, they have been shown to be equally sensitive to changes in the elevation and azimuth of the sound source, while other studied species, e.g. humans, are much more sensitive to the latter than to the former. A laboratory experiment conducted by our team on a dry skull [2] has shown that sound reverberated in bones could possibly play an important role in enhancing localization accuracy, and it has been speculated that the dolphin sound localization system could somehow rely on the analysis of this information. We employ our new numerical model to simulate the response of the same skull used by [2] to sound sources at a wide and dense set of locations on the vertical plane. This work is the first step towards the implementation of a new tool for modeling source (echo)location in dolphins; in future work, this will allow us to effectively explore a wide variety of emitted signals and anatomical features.


Author(s):  
Zhiyao Song ◽  
Honggui Zhang ◽  
Jun Kong ◽  
Ruijie Li ◽  
Wei Zhang

Introduction of an effective wave elevation function, the simplest time-dependent hyperbolic mild-slope equation has been presented and an effective numerical model for the water wave propagation has been established combined with different boundary conditions in this paper. Through computing the effective wave elevation and transforming into the real transient wave motion, then related wave heights are computed. Because the truncation errors of the presented model only induced by the dissipation terms, but those of Lin’s model (2004) contributed by the convection terms, dissipation terms and source terms, the error analysis shows that calculation stability of this model is enhanced obviously compared with Lin’s one. The tests show that this model succeeds to the merit in Lin’s one and the computer program simpler, computational time shorter because of calculation stability enhanced efficiently and computer memory decreased obviously. The presented model has the capability of simulating exactly the location of transient wave front by the speed of wave propagation in the first test, which is important for the real-time prediction of the arrival time of water waves generated in the deep sea. The model is validated against experimental data for combined wave refraction and diffraction over submerged circular shoal on a flat bottom in the second test. Good agreements are gained. The model can be applied to the theory research and engineering applications about the wave propagation in the coastal waters.


1998 ◽  
Vol 26 ◽  
pp. 174-178 ◽  
Author(s):  
Peter Gauer

A physically based numerical model of drifting and blowing snow in three-dimensional terrain is developed. The model includes snow transport by saltation and suspension. As an example, a numerical simulation for an Alpine ridge is presented and compared with field measurements.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3553
Author(s):  
Dengwang Wang ◽  
Yong Gao ◽  
Sheng Wang ◽  
Jie Wang ◽  
Haipeng Li

Carbon/Phenolic (C/P), a typical anisotropic material, is an important component of aerospace and often used to protect the thermodynamic effects of strong X-ray radiation. In this paper, we establish the anisotropic elastic-plastic constitutive model, which is embedded in the in-house code “RAMA” to simulate a two-dimensional thermal shock wave induced by X-ray. Then, we compare the numerical simulation results with the thermal shock wave stress generated by the same strong current electron beam via experiment to verify the correctness of the numerical simulation. Subsequently, we discuss and analyze the rules of thermal shock wave propagation in C/P material by further numerical simulation. The results reveal that the thermal shock wave represents different shapes and mechanisms by the radiation of 1 keV and 3 keV X-rays. The vaporization recoil phenomenon appears as a compression wave under 1 keV X-ray irradiation, and X-ray penetration is caused by thermal deformation under 3 keV X-ray irradiation. The thermal shock wave propagation exhibits two-dimensional characteristics, the energy deposition of 1 keV and 3 keV both decays exponentially, the energy deposition of 1 keV-peak soft X-ray is high, and the deposition depth is shallow, while the energy deposition of 3 keV-peak hard X-ray is low, and the deposition depth is deep. RAMA can successfully realize two-dimensional orthotropic elastoplastic constitutive relation, the corresponding program was designed and checked, and the calculation results for inspection are consistent with the theory. This study has great significance in the evaluation of anisotropic material protection under the radiation of intense X-rays.


2013 ◽  
Vol 13 (9) ◽  
pp. 2223-2238 ◽  
Author(s):  
A. Boilley ◽  
J.-F. Mahfouf

Abstract. The Nice Côte d'Azur international airport is subject to horizontal low-level wind shears. Detecting and predicting these hazards is a major concern for aircraft security. A measurement campaign took place over the Nice airport in 2009 including 4 anemometers, 1 wind lidar and 1 wind profiler. Two wind shear events were observed during this measurement campaign. Numerical simulations were carried out with Meso-NH in a configuration compatible with near-real time applications to determine the ability of the numerical model to predict these events and to study the meteorological situations generating an horizontal wind shear. A comparison between numerical simulation and the observation dataset is conducted in this paper.


Sign in / Sign up

Export Citation Format

Share Document