scholarly journals Use of geotechnologies in integrated assessment of urban drainage, water resources and urbanization

2015 ◽  
Vol 10 (4) ◽  
pp. 453-466 ◽  
Author(s):  
E. Pacheco ◽  
A. Finotti
2020 ◽  
Vol 12 (5) ◽  
pp. 2147 ◽  
Author(s):  
Farahat S. Moghanm ◽  
Antar El-Banna ◽  
Mohamed A. El-Esawi ◽  
Mohamed M. Abdel-Daim ◽  
Ahmed Mosa ◽  
...  

Potentially toxic elements (PTEs)-induced genotoxicity on aquatic plants is still an open question. Herein, a single clone from a population of water hyacinth covering a large distribution area of Nile River (freshwater) was transplanted in two drainage water resources to explore the hazardous effect of PTEs on molecular, biochemical and anatomical characters of plants compared to those grown in freshwater. Inductivity Coupled Plasma (ICP) analysis indicated that PTEs concentrations in water resources were relatively low in most cases. However, the high tendency of water hyacinth to bio-accumulate and bio-magnify PTEs maximized their concentrations in plant samples (roots in particular). A Random Amplified Polymorphic DNA (RAPD) assay showed the genotoxic effects of PTEs on plants grown in drainage water. PTEs accumulation caused substantial alterations in DNA profiles including the presence or absence of certain bands and even the appearance of new bands. Plants grown in drainage water exhibited several mutations on the electrophoretic profiles and banding pattern of total protein, especially proteins isolated from roots. Several anatomical deteriorations were observed on PTEs-stressed plants including reductions in the thickness of epidermis, cortex and endodermis as well as vascular cylinder diameter. The research findings of this investigation may provide some new insights regarding molecular, biochemical and anatomical responses of water hyacinth grown in drainage water resources.


2018 ◽  
Vol 48 ◽  
pp. 05002
Author(s):  
Joni Hermana ◽  
Irhamah ◽  
Dian Saptarini ◽  
Tatas

Institut Teknologi Sepuluh Nopember (ITS) Campus, with the area of 167.4 Ha, is located within Surabaya coastal region in the eastern part of Java Island. It has initial characteristic with wetlands and swamps ecosystem. As a science and technological university, with the main acitivities in teaching, experimental laboratory works, and student activities, ITS is, currently, using ± 49% of its total vast area as building blocks for supporting academic facilities. Being a campus in a coastal zone, the commonly main problems are high porous soil, brackish surface water, high level of ground water, an obstructed drainage tendency because of delicate slant, and low catchment capability. This paper provides an action program on how ITS manage water resources within campus area in order to suppress environmental damage. Many steps had been taken into account for water catchment role, for instance: maintaining the catchment area on the main ITS master plan, planning catchment pond, surface water stabilization by preventing ground water usage, interrupting drainage water flow as being directly discharged into the city drainage system, rain water harvesting, and also designing floating floor for buildings.


InCIEC 2014 ◽  
2015 ◽  
pp. 989-1001 ◽  
Author(s):  
A. Y. Zahrim ◽  
L. N. S. Ricky ◽  
Y. Shahril ◽  
S. Rosalam ◽  
B. Nurmin ◽  
...  

2013 ◽  
Vol 10 (5) ◽  
pp. 6359-6406 ◽  
Author(s):  
N. Voisin ◽  
L. Liu ◽  
M. Hejazi ◽  
T. Tesfa ◽  
H. Li ◽  
...  

Abstract. An integrated model is being developed to advance our understanding of the interactions between human activities, terrestrial system and water cycle, and to evaluate how system interactions will be affected by a changing climate at the regional scale. As a first step towards that goal, a global integrated assessment model including a water-demand model is coupled offline with a land surface hydrology – routing – water resources management model. In this study, a spatial and temporal disaggregation approach is developed to project the annual regional water demand simulations into a daily time step and subbasin representation. The model demonstrated reasonable ability to represent the historical flow regulation and water supply over the Midwest (Missouri, Upper Mississippi, and Ohio). Implications for future flow regulation, water supply, and supply deficit are investigated using a climate change projection with the B1 emission scenario, which affects both natural flow and water demand. Over the Midwest, changes in flow regulation are mostly driven by the change in natural flow due to the limited storage capacity over the Ohio and Upper Mississippi River basins. The changes in flow and demand have a combined effect on the Missouri summer regulated flow. The supply deficit seems to be driven by the change in flow over the region. Spatial analysis demonstrates the relationship between the supply deficit and the change in demand over urban areas not along a main river or with limited storage, and over areas upstream of groundwater dependent fields, which therefore have an overestimated surface water demand.


Author(s):  

The advantages of the basin approach in the study of regional water use are justified in the article, water management areas according to the water management division of the Russian Federation were used as territorial units of the study. A universal methodic for the integrated assessment of the region’s water management activities was developed, based on geo/information technology. Stages of the study are described, including water management of the area, ranking based on the total anthropogenic load on water bodies and river basins, zoning of the territory to optimize the target use of water resources. The GIS of water use of the Lake Baikal basin is developed on the basis of governmental statistics, mass media examples of organization of water management data, as well as the results of automated mapping of water bodies. The results of water management regionalization are presented and spatial regularities of water use organization in the investigated territory are revealed. The ranking of river basins and water bodies according to the degree of anthropogenic load has been carried out, ecological problems of the region have been identified and their spatial localization has been fixed, the exact locations of pollution sources and their influence on water management have been established. Zoning of the territory under study for targeted use of water resources was proposed, five unique zones were identified, differentiated according to the special conditions for the formation of water resources and the specific use of water bodies, as well as the nature and intensity of the current and forecasted water use. A set of measures to optimize water use within the zones of targeted use of water resources is proposed.


2002 ◽  
Vol 4 (4) ◽  
pp. 235-243 ◽  
Author(s):  
Raf Bouteligier ◽  
Guido Vaes ◽  
Jean Berlamont

One of the key aspects in urban drainage (water quality) modelling is the accurate simulation of the input into such models. The modelling of surface sediment build-up, erosion and wash-off is discussed in this paper. An analysis and a comparison of the quality modelling tools of the commercial urban drainage software packages HydroWorks (Wallingford Software, UK) and Mouse (DHI, Denmark) reveal important differences between, and incompatibilities in, both models. The analysis is performed using concentration–duration–frequency (CDF) relationships. A generalised model, accounting for the common model principles used in both models and incorporating the model principles lacking, is proposed.


Sign in / Sign up

Export Citation Format

Share Document