scholarly journals Proposal for a classification method of building materials in the Italian rules concerning low energy design

Author(s):  
F. Cumo ◽  
L. Calcagnini ◽  
G. Piras
Buildings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 150 ◽  
Author(s):  
Jouri Kanters

Stricter building regulations have resulted in the construction of buildings with a low energy use during the operation phase. It has now become increasingly important to also look at the embodied energy, because it might, over the lifespan of the building, equal the energy used for operating the building. One way to decrease the embodied energy is to reuse building materials and components or to prepare the building for deconstruction; a term called design for deconstruction (DfD). While design for deconstruction has showed environmental, social, and economic benefits, hardly any building designed and built today is designed for deconstruction. The aim of this literature review is to understand the state-of-art of design for deconstruction and how it affects the design process. In most of the literature, general construction principles are specified that promote the design for deconstruction and focus on (a) the overall building design, (b) materials and connections, (c) construction and deconstruction phase, and (d) communication, competence, and knowledge. Furthermore, the reuse potential of specific building materials is discussed, as well as the available tools for DfD. Additionally, the current barriers for DfD as specified by the literature show lack of competence, regulations, and other related elements.


2014 ◽  
Vol 672-674 ◽  
pp. 1859-1862
Author(s):  
Li Zhong Shi ◽  
Ye Min Zhang

In recent years, ‘passive house’ is an increasingly well-known word, and has gained rapid popularity and application in Europe and other developed countries. Currently, residential passive house is growing at 8% annually in Europe. With its low energy consumption and ultra-high comfort, it is acclaimed as the most promising energy-saving substitute of conventional residences of this century. The passive houses in Hamburg Germany use 75% less energy than the normal low-energy buildings, more than 90% less than conventional German buildings [1]. As reported by the National Conference of Green Building Materials and German Passive House Technology held from 22nd to 25th April 2014, passive house will certainly become the mainstream building in the country in the next three to five years.


2018 ◽  
Vol 28 (4) ◽  
pp. 506-519 ◽  
Author(s):  
Josefin Persson ◽  
Thanh Wang ◽  
Jessika Hagberg

The use of an airtight frame in low-energy buildings could increase the risk of health-related problems, such as allergies and sick building syndromes (SBS), associated with chemical emissions from building materials, especially if the ventilation system is not functioning properly. In this study, the indoor air quality (IAQ) was investigated in newly built low-energy and conventional preschools by monitoring the indoor air temperature, relative humidity, particle-size distribution and levels of carbon dioxide (CO2), nitrogen dioxide (NO2), formaldehyde and total volatile organic compounds (TVOC). The thermal comfort was satisfactory in all preschools, with average indoor air temperature and a relative humidity at 21.4°C and 36%, respectively. The highest levels of TVOC (range: 130–1650 µg/m3 toluene equivalents) and formaldehyde (range: 1.9–28.8 µg/m3) occurred during the first sampling period associated with strong emissions from building materials. However, those preschools constructed with environmental friendly building materials (such as Swan Eco-label) had lower initial TVOC levels compared to those preschools constructed with conventional building materials. The IAQ and indoor chemical emissions were also strongly dependent on the functioning of the ventilation system. Preliminary risk assessment indicated that exposure to acrolein and crotonaldehyde might lead to respiratory-tract irritation among occupants.


2001 ◽  
Vol 5 (4) ◽  
pp. 293-295
Author(s):  
Rob Marsh

Max Fordham's perceptive comments (letters, arq 5/3) raise many interesting points on building physics and the environmental performance of buildings. Our article (arq 5/1) summarizes a research project that environmentally analyzed trends in Danish housing design. The results showed that the typical design strategies advocated by ‘traditional’ low-energy and passive housing design methods (large glass areas and heavy thermal mass) are not necessarily the most optimal. Such strategies only take account of the heating demand and do not use modern life-cycle analysis methodologies where the environmental impact of the building materials is also integrated.


2014 ◽  
Vol 600 ◽  
pp. 132-143 ◽  
Author(s):  
Daniel Maskell ◽  
Andrew Heath ◽  
Pete Walker

Buildings account for approximately one third of the total worldwide energy emissions, of which approximately a quarter can be attributed to the embodied energy of the building. Current UK legislation for low-energy homes is only concerned with operational energy. Embodied energy, and carbon, is not currently considered but over the design life of an average building is expected to make a significant contribution to the total whole life energy used. Earthen building materials contribute to reduce energy consumption in use through their passive regulation of temperature and humidity. In addition, there can also be significant embodied energy savings compared to other materials. Traditional methods of earthen construction, using locally sourced materials and manual labour require minimal energy for the transport and construction. A greater uptake of earth construction is likely to come from modern innovations such as industrialised manufacture. Extruded fired brick manufacturing processes has the potential to produce a high quality, low cost and low energy product suitable for the mainstream construction sector in both developed and developing nations. By not firing the extruded clay bricks, an embodied energy saving of 86% can be achieved, compared to fired clay, and 25% compared to concrete blocks. However, there are limitations to the structural use of unstabilised earth bricks due to the loss of strength under high moisture content conditions. The use of traditional and novel stabilisation methods can be adopted to address the concerns over strength and durability. Cement and lime are widely used in some countries, but both significantly increase material embodied energy and carbon and can inhibit passive humidity regulation. The paper presents results from a study of the embodied energy of various stabilisers used for unfired clay materials. The Global Warming Potential (GWP) is a measure of the equivalent carbon dioxide that allows for the relative weightings of damaging greenhouse gasses. Both the embodied energy and the GWP figures of various stabilisers are compared and discussed. The conclusion of the work is that there is a maximum quantity of stabiliser than should be used. Typically the quantities of stabiliser are quoted as the amount that gives the maximum strength, but this should take account of not only strength but the environmental impact of achieving the improvement.


2015 ◽  
Vol 1090 ◽  
pp. 96-100 ◽  
Author(s):  
Meng Meng Li ◽  
Satoru Kawasaki ◽  
Qiu Zhuo Zhang ◽  
Varenyam Achal

The present world cannot be imagined without construction industry. On other hand we are not able to prevent impact of construction on the environment due to usage of its key component that is cement, which plays a greater role in the emission of greenhouse gases. Every tonne of Ordinary Portland Cement (OPC) that is produced releases on average a similar amount of CO2into the atmosphere, or in total roughly 6% of all man-made carbon emissions. One of the purposes of research should be to lower the amount of cement during construction without compromising the quality of building structure. Microbial metabolic activities often contribute to selective cementation by biomineralization. In the present study, a novel microbial based low energy green building material based on microbially induced calcium carbonate precipitation (MICP) has been reported that is known as “biocement”. Biocement has enormous potential and usage in building materials and structures with potential to partially replace the cement. The research demonstrates that production of biocement can enhance the durability of building structures in addition to have least impact on the environment.


Author(s):  
Elvija Namsone ◽  
Genadijs Sahmenko ◽  
Aleksandrs Korjakins

Building sector is known as one of the biggest polluters, causing environmental pollution and carbon dioxide emissions, most of which are generated during the production process of building materials. Therefore, researchers and manufacturers have become increasingly interested in environmentally friendly materials with low energy consumption. Magnesium based cements are being studied as an alternative to a widespread material as Portland cement, thus reducing the temperature required for calcination. During this research, magnesium binder-based composites using two types of magnesium (local dolomite waste material and caustic magnesia) were produced. Within the framework of this study, several regimes of thermal treatment were used to produce low carbon dioxide and environmentally friendly magnesium binder composites. Physical, mechanical and thermal properties of obtained specimens were tested. 


Sign in / Sign up

Export Citation Format

Share Document