scholarly journals Comparing the Environmental Impact of Stabilisers for Unfired Earth Construction

2014 ◽  
Vol 600 ◽  
pp. 132-143 ◽  
Author(s):  
Daniel Maskell ◽  
Andrew Heath ◽  
Pete Walker

Buildings account for approximately one third of the total worldwide energy emissions, of which approximately a quarter can be attributed to the embodied energy of the building. Current UK legislation for low-energy homes is only concerned with operational energy. Embodied energy, and carbon, is not currently considered but over the design life of an average building is expected to make a significant contribution to the total whole life energy used. Earthen building materials contribute to reduce energy consumption in use through their passive regulation of temperature and humidity. In addition, there can also be significant embodied energy savings compared to other materials. Traditional methods of earthen construction, using locally sourced materials and manual labour require minimal energy for the transport and construction. A greater uptake of earth construction is likely to come from modern innovations such as industrialised manufacture. Extruded fired brick manufacturing processes has the potential to produce a high quality, low cost and low energy product suitable for the mainstream construction sector in both developed and developing nations. By not firing the extruded clay bricks, an embodied energy saving of 86% can be achieved, compared to fired clay, and 25% compared to concrete blocks. However, there are limitations to the structural use of unstabilised earth bricks due to the loss of strength under high moisture content conditions. The use of traditional and novel stabilisation methods can be adopted to address the concerns over strength and durability. Cement and lime are widely used in some countries, but both significantly increase material embodied energy and carbon and can inhibit passive humidity regulation. The paper presents results from a study of the embodied energy of various stabilisers used for unfired clay materials. The Global Warming Potential (GWP) is a measure of the equivalent carbon dioxide that allows for the relative weightings of damaging greenhouse gasses. Both the embodied energy and the GWP figures of various stabilisers are compared and discussed. The conclusion of the work is that there is a maximum quantity of stabiliser than should be used. Typically the quantities of stabiliser are quoted as the amount that gives the maximum strength, but this should take account of not only strength but the environmental impact of achieving the improvement.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hamed Nouri ◽  
Majid Safehian ◽  
Seyed Majdeddin Mir Mohammad Hosseini

PurposeAlthough the use of diverse types of bricks as the primary construction materials has been considered for many years, vernacular earthen materials are also widely used for construction with low potential environmental impacts in developing countries. In this study, the life cycle of two types of building materials for wall building is investigated.Design/methodology/approachFor this purpose, life cycle carbon emissions (LCCO2) are compared and embodied energy calculation for rammed earth and fired clay bricks as two construction materials. The complete construction chain using rammed earth, as a modern norm, and fired clay bricks, as the most common construction materials in buildings, is investigated in this research.FindingsStudies on the constructions in Kashan city in the north of Isfahan province, Iran, as a case study, showed that replacing the fired bricks with rammed earth would reduce the CO2 emissions up to 1,245 kg/ton and 4,646 MJ/ton (i.e. more than 95%) of the embodied energy. It also shows that the choice of building materials should be important for building practitioners to consider the environmental impact.Originality/valueThis paper provide life cycle assessment of building materials. The findings of this study help builders and owner to choose sustainable building materials.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1905 ◽  
Author(s):  
Ming Hu

Knowledge and research tying the environmental impact and embodied energy together is a largely unexplored area in the building industry. The aim of this study is to investigate the practicality of using the ratio between embodied energy and embodied carbon to measure the building’s impact. This study is based on life-cycle assessment and proposes a new measure: life-cycle embodied performance (LCEP), in order to evaluate building performance. In this project, eight buildings located in the same climate zone with similar construction types are studied to test the proposed method. For each case, the embodied energy intensities and embodied carbon coefficients are calculated, and four environmental impact categories are quantified. The following observations can be drawn from the findings: (a) the ozone depletion potential could be used as an indicator to predict the value of LCEP; (b) the use of embodied energy and embodied carbon independently from each other could lead to incomplete assessments; and (c) the exterior wall system is a common significant factor influencing embodied energy and embodied carbon. The results lead to several conclusions: firstly, the proposed LCEP ratio, between embodied energy and embodied carbon, can serve as a genuine indicator of embodied performance. Secondly, environmental impact categories are not dependent on embodied energy, nor embodied carbon. Rather, they are proportional to LCEP. Lastly, among the different building materials studied, metal and concrete express the highest contribution towards embodied energy and embodied carbon.


Buildings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 150 ◽  
Author(s):  
Jouri Kanters

Stricter building regulations have resulted in the construction of buildings with a low energy use during the operation phase. It has now become increasingly important to also look at the embodied energy, because it might, over the lifespan of the building, equal the energy used for operating the building. One way to decrease the embodied energy is to reuse building materials and components or to prepare the building for deconstruction; a term called design for deconstruction (DfD). While design for deconstruction has showed environmental, social, and economic benefits, hardly any building designed and built today is designed for deconstruction. The aim of this literature review is to understand the state-of-art of design for deconstruction and how it affects the design process. In most of the literature, general construction principles are specified that promote the design for deconstruction and focus on (a) the overall building design, (b) materials and connections, (c) construction and deconstruction phase, and (d) communication, competence, and knowledge. Furthermore, the reuse potential of specific building materials is discussed, as well as the available tools for DfD. Additionally, the current barriers for DfD as specified by the literature show lack of competence, regulations, and other related elements.


2013 ◽  
Vol 1492 ◽  
pp. 85-90 ◽  
Author(s):  
Megan Kreiger ◽  
Joshua M. Pearce

ABSTRACTAlthough additive layer manufacturing is well established for rapid prototyping the low throughput and historic costs have prevented mass-scale adoption. The recent development of the RepRap, an open source self-replicating rapid prototyper, has made low-cost 3-D printers readily available to the public at reasonable prices (<$1,000). The RepRap (Prusa Mendell variant) currently prints 3-D objects in a 200x200x140 square millimeters build envelope from acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA). ABS and PLA are both thermoplastics that can be injection-molded, each with their own benefits, as ABS is rigid and durable, while PLA is plant-based and can be recycled and composted. The melting temperature of ABS and PLA enable use in low-cost 3-D printers, as these temperature are low enough to use in melt extrusion in the home, while high enough for prints to retain their shape at average use temperatures. Using 3-D printers to manufacture provides the ability to both change the fill composition by printing voids and fabricate shapes that are impossible to make using tradition methods like injection molding. This allows more complicated shapes to be created while using less material, which could reduce environmental impact.As the open source 3-D printers continue to evolve and improve in both cost and performance, the potential for economically-viable distributed manufacturing of products increases. Thus, products and components could be customized and printed on-site by individual consumers as needed, reversing the historical trend towards centrally mass-manufactured and shipped products. Distributed manufacturing reduces embodied transportation energy from the distribution of conventional centralized manufacturing, but questions remain concerning the potential for increases in the overall embodied energy of the manufacturing due to reduction in scale. In order to quantify the environmental impact of distributed manufacturing using 3-D printers, a life cycle analysis was performed on a plastic juicer. The energy consumed and emissions produced from conventional large-scale production overseas are compared to experimental measurements on a RepRap producing identical products with ABS and PLA. The results of this LCA are discussed in relation to the environmental impact of distributed manufacturing with 3-D printers and polymer selection for 3-D printing to reduce this impact. The results of this study show that distributed manufacturing uses less energy than conventional manufacturing due to the RepRap's unique ability to reduce fill composition. Distributed manufacturing also has less emissions than conventional manufacturing when using PLA and when using ABS with solar photovoltaic power. The results of this study indicate that open-source additive layer distributed manufacturing is both technically viable and beneficial from an ecological perspective.


2020 ◽  
Vol 12 (6) ◽  
pp. 2258
Author(s):  
Qianmiao Yang ◽  
Liyao Kong ◽  
Hui Tong ◽  
Xiaolin Wang

Energy consumption during use is the focus of insulation envelope design, but the environmental impact of other stages in the entire life cycle of building envelopes should be of equal concern. In this paper, a model has been developed based on the life-cycle environmental assessment for calculating the environmental impacts of building envelopes. The model proposed will be useful to evaluate the environmental performance of various envelopes to optimize the design of energy-saving envelopes. Consequently, lots of experiments are conducted for environmental impact assessment and analysis for external windows and filler walls with energy-savings in heating areas of China. Four conclusions can be drawn from the analysis. (1) K of building envelope is the design parameter of the greatest impact on environmental performance and has a critical value, which is the value that has the smallest environmental impact over the entire life cycle. (2) The importance of the environmental impact of the building envelope during the life cycle stages is as follows: usage > production > transportation > disposal > construction. The construction process of the thermal insulation wall could be negligible. (3) The choice of regional building materials should consider the distance of transportation, which may be the key factor determining its life cycle environmental performance. (4) Aerated concrete EPS walls and wooden windows are the first choices for envelope construction from the environmental impact throughout the life cycle.


2013 ◽  
Vol 724-725 ◽  
pp. 1597-1601 ◽  
Author(s):  
Ahmad Faiz Abd Rashid ◽  
Sumiani Yusoff ◽  
Noorsaidi Mahat

The introduction of life cycle assessment (LCA) to the building industry is important due to its ability to systematically quantify every environmental impact involved in every process from cradle to grave. Within the last two decades, research on LCA has increased considerably covering from manufacturing of building materials and construction processes. However, the LCA application for buildings in Asia are limited and fragmented due to different research objectives, type of buildings and locations. This paper has attempted to collect and review the application of LCA in the building industry in Asia from the selected publications over the last 12 years, from 2001 to 2012. The result shows that most LCA research basic methodology is based on International Organization of Standardization (ISO) 14040 series but with variance. It is found that the operational phase consume highest energy and concrete responsible for the highest total embodied energy and environmental impact. It also suggested that building material with low initial embodied energy does not necessarily have low life cycle energy. Overall, findings from LCA studies can help to make informed decisions in terms of environmental impact and help realizing sustainable buildings in the future.


2020 ◽  
Vol 30 (1) ◽  
pp. 145-160
Author(s):  
Ramalingam Vijayalakshmi ◽  
Srinivasan Ramanagopal

AbstractSustainable development of the built environment in developing countries is a major challenge in the 21st century. The use of local materials in the construction of buildings is one of the potential ways to support sustainable development in both urban and rural areas where burnt clay bricks are used predominantly. This work focuses mainly on the use of polypropylene micro fibers in ordinary Cellular Lightweight Concrete blocks. The main objective is to develop a high-performance fibre reinforced cellular concrete to provide a better alternative than clay bricks for structural applications of masonry. This paper presents the stress-strain behaviour of polypropylene fibre reinforced Cellular Lightweight Concrete stack bonded prisms under axial compression. Masonry compressive strength is typically obtained by testing stack bonded prisms under compression normal to its bed joint. Use of micro-fibres enhances the pre-cracking behaviour of masonry by arresting cracks at micro-scale in the post-peak region. These efforts are necessary to ensure that CLC blocks become more accepted in the world of building materials and considered as a reliable option for providing low-cost housing.


2013 ◽  
Vol 8 (2) ◽  
pp. 93-102
Author(s):  
Milan Porhincak ◽  
Adriana Estokova

Abstract Building activity has recently led to the deterioration of environment and has become unsustainable. Several strategies have been introduced in order to minimize consumption of energy and resulting CO2 emissions having their origin in the operational phase. But also other stages of Life Cycle should are important to identify the overall environmental impact of construction sector. In this paper 5 similar Slovak buildings (family houses) were analyzed in terms of environmental performance of building materials used for their structures. Evaluation included the weight of used materials, embodied energy and embodied CO2 and SO2 emissions. Analysis has proven that the selection of building materials is an important factor which influences the environmental profile. Findings of the case study indicated that materials like concrete, ceramic or thermal insulation materials based on polystyrene and mineral wool are ones with the most negative environmental impact.


Spatium ◽  
2009 ◽  
pp. 23-27
Author(s):  
Milica Jovanovic-Popovic ◽  
Saja Kosanovic

Numerous scientific researches show that the activities connected with building materials produce significant negative environmental effects. Observed from the point of architecture, the use of building materials is found to be one of the critical factors of environmental pollution and degradation. The purpose of introducing architectural interventions, including proper selection, is the reduction of the negative environmental impact of building materials. The aim of this paper is to define, from the ecological aspect, basic principles for the selection of building materials. First, principles were defined through the all - inclusive analysis of every phase in the life cycle of building materials. Summing categories: embodied energy and embodied CO2 are discussed afterwards. In the order to simplify the procedure of arriving at a decision, priorities in selection were emphasized in every separate segment of this paper. The selection of building materials with reduced negative environmental impact (ecologically correct building materials) is one of the key decisions in the process of designing ecologically correct buildings.


2021 ◽  
Vol 26 (2) ◽  
pp. 135-161
Author(s):  
Hirakraj Bapat ◽  
Debasis Sarkar ◽  
Rajesh Gujar

This study aims to develop a methodology for the selection of sustainable building materials for the reduction of embodied and operational energy for a complex infrastructure transportation project, i.e., elevated metro rail station of Ahmedabad, India by application of building information modelling (BIM) and factor comparison method (FCM). Evaluation of the alternative building materials and designs to obtain the best energy efficiency has been carried out using Revit Architecture 2018 and Green Building Studio. The achieved average embodied energy savings is about 73%, which is by the suggested alternative materials instead of existing ones. By application of FCM, which is a multi-criteria decision making (MCDM) technique, it has been observed that the polished Kota-stone flooring, stone-floor tile cladding, toughened fibre-glass ceiling and insulated fibre-glass door appear to be the most feasible sustainable material for flooring, wall cladding, ceiling, openings and fenestrations for the design of the metro rail station box in Ahmedabad, India. This study contributes significant knowledge in the field by highlighting the application of BIM as a tool for sustainable development and recommends a few alternate building materials and sustainable designs which would result in the reduction of energy usage for the metro-rail-station and other building structures leading to a sustainable future.


Sign in / Sign up

Export Citation Format

Share Document