scholarly journals A Group-Based Personalized Model for Image Privacy Classification and Labeling

Author(s):  
Haoti Zhong ◽  
Anna Squicciarini ◽  
David Miller ◽  
Cornelia Caragea

We address machine prediction of an individual's label (private or public) for a given image. This problem is difficult due to user subjectivity and inadequate labeled examples to train individual, personalized models. It is also time and space consuming to train a classifier for each user. We propose a Group-Based Personalized Model for image privacy classification in online social media sites, which learns a set of archetypical privacy models (groups), and associates a given user with one of these groups. Our system can be used to provide accurate ``early warnings'' with respect to a user's privacy awareness level.

2017 ◽  
Vol 34 (2) ◽  
pp. 135-164 ◽  
Author(s):  
M. Sidury Christiansen

This study describes how members of a transnational social network of Mexican bilinguals living in Chicago manipulate their language on online social media to facilitate and maintain close connections across borders. Using a discourse-centered online ethnographic approach, I examine conversations posted on members’ Facebook walls and the contexts in which the discourses are formed. I argue that members of this transnational social network engage in the use of deterritorialized discourse to create chronotopes; that is, through discourse, members connect temporal and spatial relationships and form them into a single constructed context. These chronotopes help members recontextualize Facebook as a unique transnational social place that connects families and allows for the continuation of cultural practices that maintain their transnationalism. This study sheds light on the use of linguistic resources and modes of communication to examine how individuals construct imagined experiences within a real intimate community in the deterritorialized space of online social media.


2012 ◽  
Vol 3 (5) ◽  
pp. 379-381
Author(s):  
Dr. Aruna Kumar Mishra ◽  
◽  
Narendra Kumar Narendra Kumar ◽  
Abhishek Sharma

2020 ◽  
Vol 24 (1) ◽  
pp. 58
Author(s):  
Anwar Hafidzi

This research begins with an understanding of the endemic radicalism of society, not only of the real world, but also of various online social media. This study showed that the avoidance of online radicalism can be stopped as soon as possible by accusing those influenced by the radical radicality of a secular religious approach. The methods used must be assisted in order to achieve balanced understanding (wasathiyah) under the different environmental conditions of the culture through recognizing the meaning of religion. The research tool used is primarily library work and the journal writings by Abu Rokhmad, a terrorist and radicalise specialist. The results of this study are that an approach that supports inclusive ism will avoid the awareness of radicalization through a heart-to-heart approach. This study also shows that radical actors will never cease to argue dramatically until they are able to grasp different views from Islamic law, culture, and families.Keywords: radicalism, deradicalization, multiculturalism, culture, religion, moderate.Penelitian ini berawal dari paham radikalisme yang telah mewabah di masyarakat, bukan hanya di dunia nyata, bahkan sudah menyusup di berbagai media sosial online. Penelitian ini menemukan bahwa cara menangkal radikalisme online dapat dilakukan pencegahan sedini mungkin melalui pendekatan konseling religius multikultural terhadap mereka yang terkena paham radikal radikal. Diantara teknik yang digunakan adalah melalui pemahaman tentang konsep agama juga perlu digalakkan agar memunculkan pemahaman yang moderat (wasathiyah) diberbagai keadaan lingkungan masyarakat. Metode yang digunakan untuk penelitian ini adalah library research dengan sumber utama adalah karya dan jurnal karya Abu Rokhmad seorang pakar dalam masalah terorisme dan radikalisme. Temuan penelitian ini adalah paham radikalisasi itu dapat dihentikan dengan pendekatan hati ke hati dengan mengedepankan budaya yang multikultural. Kajian ini juga membuktikan bahwa pelaku paham radikal tidak akan pernah berhenti memberikan argumen radikal kecuali mampu memahami perbedaan pendapat yang bersumber dari syariat Islam, lingkungan sosial, dan keluarga.Kata kunci: radikalisme, deradikalisasi, multikultural, budaya, agama, moderat.


2012 ◽  
Author(s):  
Fouad H. Mirzaei ◽  
Fredrik Odegaard ◽  
Xinghao Yan

Author(s):  
Max Z. Li ◽  
Megan S. Ryerson

Community outreach and engagement efforts are critical to an airport’s role as an ever-evolving transportation infrastructure and regional economic driver. As online social media platforms continue to grow in both popularity and influence, a new engagement channel between airports and the public is emerging. However, the motivations behind and effectiveness of these social media channels remain unclear. In this work, we address this knowledge gap by better understanding the advantages, impact, and best practices of this newly emerging engagement channel available to airports. Focusing specifically on airport YouTube channels, we first document quantitative viewership metrics, and examine common content characteristics within airport YouTube videos. We then conduct interviews and site visits with relevant airport stakeholders to identify the motivations and workflow behind these videos. Finally, we facilitate sample focus groups designed to survey public perceptions of the effectiveness and value of these videos. From our four project phases, to maximize content effectiveness and community engagement potential, we synthesize the following framework of action items, recommendations, and best practices: (C) Consistency and community; (O) Organizational structure; (M) Momentum; (B) Branding and buy-in; (A) Activity; (T) Two-way engagement; (E) Enthusiasm; and (D) Depth, or as a convenient initialism, our COMBATED framework.


2021 ◽  
Vol 2 (2) ◽  
pp. 1-31
Author(s):  
Esteban A. Ríssola ◽  
David E. Losada ◽  
Fabio Crestani

Mental state assessment by analysing user-generated content is a field that has recently attracted considerable attention. Today, many people are increasingly utilising online social media platforms to share their feelings and moods. This provides a unique opportunity for researchers and health practitioners to proactively identify linguistic markers or patterns that correlate with mental disorders such as depression, schizophrenia or suicide behaviour. This survey describes and reviews the approaches that have been proposed for mental state assessment and identification of disorders using online digital records. The presented studies are organised according to the assessment technology and the feature extraction process conducted. We also present a series of studies which explore different aspects of the language and behaviour of individuals suffering from mental disorders, and discuss various aspects related to the development of experimental frameworks. Furthermore, ethical considerations regarding the treatment of individuals’ data are outlined. The main contributions of this survey are a comprehensive analysis of the proposed approaches for online mental state assessment on social media, a structured categorisation of the methods according to their design principles, lessons learnt over the years and a discussion on possible avenues for future research.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yasmeen George ◽  
Shanika Karunasekera ◽  
Aaron Harwood ◽  
Kwan Hui Lim

AbstractA key challenge in mining social media data streams is to identify events which are actively discussed by a group of people in a specific local or global area. Such events are useful for early warning for accident, protest, election or breaking news. However, neither the list of events nor the resolution of both event time and space is fixed or known beforehand. In this work, we propose an online spatio-temporal event detection system using social media that is able to detect events at different time and space resolutions. First, to address the challenge related to the unknown spatial resolution of events, a quad-tree method is exploited in order to split the geographical space into multiscale regions based on the density of social media data. Then, a statistical unsupervised approach is performed that involves Poisson distribution and a smoothing method for highlighting regions with unexpected density of social posts. Further, event duration is precisely estimated by merging events happening in the same region at consecutive time intervals. A post processing stage is introduced to filter out events that are spam, fake or wrong. Finally, we incorporate simple semantics by using social media entities to assess the integrity, and accuracy of detected events. The proposed method is evaluated using different social media datasets: Twitter and Flickr for different cities: Melbourne, London, Paris and New York. To verify the effectiveness of the proposed method, we compare our results with two baseline algorithms based on fixed split of geographical space and clustering method. For performance evaluation, we manually compute recall and precision. We also propose a new quality measure named strength index, which automatically measures how accurate the reported event is.


Sign in / Sign up

Export Citation Format

Share Document