scholarly journals Enhancing Existential Rules by Closed-World Variables

Author(s):  
Giovanni Amendola ◽  
Nicola Leone ◽  
Marco Manna ◽  
Pierfrancesco Veltri

Existential rules generalize Datalog with existential quantification in the head. Natively, Datalog is interpreted under a closed-world semantics, while existential rules typically employ the open-world assumption. The interpretation domain in the latter case is enlarged by infinitely many "anonymous" individuals. Then, in any rule, each variable ranges over all individuals, even if not needed or required. In this paper, we enhance existential rules by closed-world variables to consciously reason on the properties of "known" (non-anonymous) and arbitrary individuals in different ways. Accordingly, we uniformly generalize the basic classes of existential rules that ensure decidability of ontology-based query answering. For them, after observing that decidability is preserved, we prove that a strict increase in expressiveness is gained, and in most cases the computational complexity is not altered.

Author(s):  
Yucong Duan

Firstly this article presents a thorough discussion of semantics formalization related issues in model driven engineering (MDE). Then motivated for the purpose of software implementation, and attempts to overcome the shortcomings of incompleteness and context-sensitivity in the existing models, we propose to study formalization of semantics from a cognitive background. Issues under study cover the broad scope of overlap vs. incomplete vs. complete, closed world assumption (CWA) vs. open world assumption (OWA), Y(Yes)/N(No) vs. T(True)/F(False), subjective (SUBJ) vs. objective (OBJ), static vs. dynamic, unconsciousness vs. conscious, human vs. machine aspects, and so forth. A semantics formalization approach called EID-SCE (Existence Identification Dualism-Semantics Cosmos Explosion) is designed to meet both the theoretical investigation and implementation of the proposed formalization goals. EID-SCE supports the measure/evaluation in a {complete, no overlap} manner whether a given concept or feature is an improvement. Some elementary cases are also shown to demonstrate the feasibility of EID-SCE.


Author(s):  
Martin O’Connor ◽  
Mark Musen ◽  
Amar Das

The Semantic Web Rule Language (SWRL) is an expressive OWL-based rule language. SWRL allows users to write Horn-like rules that can be expressed in terms of OWL concepts to provide more powerful deductive reasoning capabilities than OWL alone. Semantically, SWRL is built on the same description logic foundation as OWL and provides similar strong formal guarantees when performing inference. Due to its description logics foundation, rule-based applications developed using SWRL have a number of relatively novel characteristics. For example, SWRL shares OWL’s open world assumption so certain types of rules that assume a closed world may be difficult or impossible to write in SWRL. In addition, all inference in SWRL is monotonic so deductions cannot be updated or retracted. These formal characteristic have a strong influence on the development and use of SWRL rules in ontology-driven applications. In this chapter, we describe the primary features of SWRL and outline how, despite some limitations, SWRL can be used to dramatically increase amount of knowledge that be represented in OWL ontologies.


Author(s):  
Yucong Duan

Firstly this article presents a thorough discussion of semantics formalization related issues in model driven engineering (MDE). Then motivated for the purpose of software implementation, and attempts to overcome the shortcomings of incompleteness and context-sensitivity in the existing models, we propose to study formalization of semantics from a cognitive background. Issues under study cover the broad scope of overlap vs. incomplete vs. complete, closed world assumption (CWA) vs. open world assumption (OWA), Y(Yes)/N(No) vs. T(True)/F(False), subjective (SUBJ) vs. objective (OBJ), static vs. dynamic, unconsciousness vs. conscious, human vs. machine aspects, and so forth. A semantics formalization approach called EID-SCE (Existence Identification Dualism-Semantics Cosmos Explosion) is designed to meet both the theoretical investigation and implementation of the proposed formalization goals. EID-SCE supports the measure/evaluation in a {complete, no overlap} manner whether a given concept or feature is an improvement. Some elementary cases are also shown to demonstrate the feasibility of EID-SCE.


Author(s):  
Jung-Do Noh ◽  
Hyo-Won Suh ◽  
Heejung Lee

This paper proposes a framework for building product information model (PIM) and product rule model (PRM), and integrated reasoning based on Description Frame Logic (DFL) [1] for collaborative product engineering environments. Most of the previous research has focused either on building ontology for PIM or on building a rule base for PRM respectively, not on both of them. Some research on product engineering has tried to build both ontology language and rule-language. But, the research is/has been limited to using both languages in a homogeneous approach under open world assumption (OWA) such as Web Ontology Language (OWL)/Semantic Web Rule Language (SWRL), which has some drawbacks to accommodate the requirements of enhanced expressivity for collaborative product engineering. We adopt Description Frame Logic (DFL) framework to integrate product semantics in PIM and engineering-specific knowledge in PRM based on description logic (DL) and logic programming (LP) under both open world assumption (OWA) and closed world assumption (CWA). This enables to secure seamless and interactive reasoning between PIM and PRM. We also include rule-expressions and constraint checking with DL for PIM while we include DL-expression in rules and LP’s non-logical features for PRM. This provides enhancement of expressiveness required for product engineering. Additionally, we show the benefits of the proposed framework with a case study.


10.29007/2df8 ◽  
2018 ◽  
Author(s):  
Stefan Borgwardt ◽  
Veronika Thost

Ontology-based query answering augments classical query answering in databases by adopting the open-world assumption and by including domain knowledge provided by an ontology. We investigate temporal query answering w.r.t. ontologies formulated in DL-Lite, a family of description logics that captures the conceptual features of relational databases and was tailored for efficient query answering. We consider a recently proposed temporal query language that combines conjunctive queries with the operators of propositional linear temporal logic (LTL). In particular, we consider negation in the ontology and query language, and study both data and combined complexity of query entailment.


Author(s):  
Navin Viswanath ◽  
Rajshekhar Sunderraman

Typically, relational databases operate under the Closed World Assumption (CWA) of Reiter (Reiter, 1987). The CWA is a meta-rule that says that given a knowledge base KB and a sentence P, if P is not a logical consequence of KB, assume ~P (the negation of P). Thus, we explicitly represent only positive facts in a knowledge base. A negative fact is implicit if its positive counterpart is not present. Under the CWA we presume that our knowledge about the world is complete i.e. there are no “gaps” in our knowledge of the real world. The Open World Assumption (OWA) is the opposite point of view. Here, we “admit” that our knowledge of the real world is incomplete. Thus we store everything we know about the world – positive and negative. Consider a database which simply contains the information “Tweety is a bird”. Assume that we want to ask this database the query “Does Tweety fly?”. Under the CWA, since we assume that there are no gaps in our knowledge, every query returns a yes/no answer. In this case we get the answer “no” because there is no information in the database stating that Tweety can fly. However, under the OWA, the answer to the query is “unknown”. i.e. the database does not know whether Tweety flies or not. We would obtain a “no” answer to this query under the OWA only if it was explicitly stated in the database that Tweety does not fly.


2021 ◽  
Author(s):  
Claudia Cauli ◽  
Magdalena Ortiz ◽  
Nir Piterman

Infrastructure in the cloud is deployed through configuration files, which specify the resources to be created, their settings, and their connectivity. We aim to model infrastructure before deployment and reason about it so that potential vulnerabilities can be discovered and security best practices enforced. Description logics are a good match for such modeling efforts and allow for a succinct and natural description of cloud infrastructure. Their open-world assumption allows capturing the distributed nature of the cloud, where a newly deployed infrastructure could connect to pre-existing resources not necessarily owned by the same user. However, parts of the infrastructure that are fully known need closed-world reasoning, calling for the usage of expressive formalisms, which increase the computational complexity of reasoning. Here, we suggest an extension of DL-LiteF that is tailored for capturing such cloud infrastructure. Our logic allows combining a core part that is completely defined (closed-world) and interacts with a partially known environment (open-world). We show that this extension preserves the first-order rewritability of DL-LiteF for knowledge-base satisfiability and conjunctive query answering. Security properties combine universal and existential reasoning about infrastructure. Thus, we also consider the problem of conjunctive query satisfiability and show that it can be solved in logarithmic space in data complexity.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Hongcheng Zou ◽  
Ziling Wei ◽  
Jinshu Su ◽  
Baokang Zhao ◽  
Yusheng Xia ◽  
...  

Website fingerprinting (WFP) attack enables identifying the websites a user is browsing even under the protection of privacy-enhancing technologies (PETs). Previous studies demonstrate that most machine-learning attacks need multiple types of features as input, thus inducing tremendous feature engineering work. However, we show the other alternative. That is, we present Probabilistic Fingerprinting (PF), a new website fingerprinting attack that merely leverages one type of features. They are produced by using a mathematical model PWFP that combines a probabilistic topic model with WFP for the first time, due to a finding that a plain text and the sequence file generated from a traffic instance are essentially the same. Experimental results show that the proposed new features are more distinguishing than the existing features. In a closed-world setting, PF attains a better accuracy performance (99.79% at most) than prior attacks on various datasets gathered in the scenarios of Shadowsocks, SSH, and TLS, respectively. Besides, even when the number of training instances drops to as few as 4, PF still reaches an accuracy of above 90%. In the more realistic open-world setting, PF attains a high true positive rate (TPR) and Bayes detection rate (BDR), and a low false positive rate (FPR) in all evaluations, which outperforms the other attacks. These results highlight that it is meaningful and possible to explore new features to improve the accuracy of WFP attacks.


Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 993 ◽  
Author(s):  
Bin Yang ◽  
Dingyi Gan ◽  
Yongchuan Tang ◽  
Yan Lei

Quantifying uncertainty is a hot topic for uncertain information processing in the framework of evidence theory, but there is limited research on belief entropy in the open world assumption. In this paper, an uncertainty measurement method that is based on Deng entropy, named Open Deng entropy (ODE), is proposed. In the open world assumption, the frame of discernment (FOD) may be incomplete, and ODE can reasonably and effectively quantify uncertain incomplete information. On the basis of Deng entropy, the ODE adopts the mass value of the empty set, the cardinality of FOD, and the natural constant e to construct a new uncertainty factor for modeling the uncertainty in the FOD. Numerical example shows that, in the closed world assumption, ODE can be degenerated to Deng entropy. An ODE-based information fusion method for sensor data fusion is proposed in uncertain environments. By applying it to the sensor data fusion experiment, the rationality and effectiveness of ODE and its application in uncertain information fusion are verified.


Sign in / Sign up

Export Citation Format

Share Document