scholarly journals Predicting Activity and Location with Multi-task Context Aware Recurrent Neural Network

Author(s):  
Dongliang Liao ◽  
Weiqing Liu ◽  
Yuan Zhong ◽  
Jing Li ◽  
Guowei Wang

Predicting users’ activity and location preferences is of great significance in location based services. Considering that users’ activity and location preferences interplay with each other, many scholars tried to figure out the relation between users’ activities and locations for improving prediction performance. However, most previous works enforce a rigid human-defined modeling strategy to capture these two factors, either activity purpose controlling location preference or spatial region determining activity preference. Unlike existing methods, we introduce spatial-activity topics as the latent factor capturing both users’ activity and location preferences. We propose Multi-task Context Aware Recurrent Neural Network to leverage the spatial activity topic for activity and location prediction. More specifically, a novel Context Aware Recurrent Unit is designed to integrate the sequential dependency and temporal regularity of spatial activity topics. Extensive experimental results based on real-world public datasets demonstrate that the proposed model significantly outperforms state-of-the-art approaches.

2021 ◽  
Vol 1 (1) ◽  
pp. 29-31
Author(s):  
Mahmood Haithami ◽  
Amr Ahmed ◽  
Iman Yi Liao ◽  
Hamid Jalab

In this paper, we aim to enhance the segmentation capabilities of DeeplabV3 by employing Gated Recurrent Neural Network (GRU). A 1-by-1 convolution in DeeplabV3 was replaced by GRU after the Atrous Spatial Pyramid Pooling (ASSP) layer to combine the input feature maps. The convolution and GRU have sharable parameters, though, the latter has gates that enable/disable the contribution of each input feature map. The experiments on unseen test sets demonstrate that employing GRU instead of convolution would produce better segmentation results. The used datasets are public datasets provided by MedAI competition.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Venugopal Boppana ◽  
P. Sandhya

AbstractRecommendation systems are obtaining more attention in various application fields especially e-commerce, social networks and tourism etc. The top items are recommended based on the ability of recommender system which predict the future preference out of the available items. Because of the internet, the people in the current society has too many options that’s why the recommendation system is very essential. The recommendation is achieved by the particular users who predict the ratings for numerous items and recommend those items to other users. Majorly, content and collaborative filtering techniques are employed in typical recommendation systems to find user preferences and provide final recommendations. But, these systems commonly lacks to take growing user preferences in various contextual factors. Context aware recommendation systems consider various contextual parameters into account and attempt to catch user preferences appropriately. The majority of the work in the recommender system domain focuses on increasing the recommendation accuracy by employing several proposed approaches where the main motive remains to maximize the accuracy of recommendations while ignoring other design objectives, such as a user’s an item’s context. Therefore, in this paper an effective deep learning based context aware recommendation model is proposed which can be act as an efficient recommender system by showing minimum error during recommendation. Initially, the dataset is pre-processed using Natural Language Tool Kit (NLTK) in Python platform. After pre-processing, the TF–IDF and word embedding model is used for every pre-processed reviews to extract the features and contextual information. The extracted feature is considered as an input of density based clustering to group the negative, neutral and positive sentiments of user reviews. Finally, deep recurrent neural Network (DRNN) is employed to get the most preferable user from every cluster. The recurrent neural network model parameter values are initialized through the fitness computation of Bald Eagle Search (BES) algorithm. The proposed model is implemented using NYC Restaurant Rich Dataset using Python programming platform and performance is evaluated based on the metrics of accuracy, precision, recall and compared with existing models. The proposed recommendation model achieves 99.6% accuracy which is comparatively higher than other machine learning models.


2020 ◽  
Vol 39 (6) ◽  
pp. 8927-8935
Author(s):  
Bing Zheng ◽  
Dawei Yun ◽  
Yan Liang

Under the impact of COVID-19, research on behavior recognition are highly needed. In this paper, we combine the algorithm of self-adaptive coder and recurrent neural network to realize the research of behavior pattern recognition. At present, most of the research of human behavior recognition is focused on the video data, which is based on the video number. At the same time, due to the complexity of video image data, it is easy to violate personal privacy. With the rapid development of Internet of things technology, it has attracted the attention of a large number of experts and scholars. Researchers have tried to use many machine learning methods, such as random forest, support vector machine and other shallow learning methods, which perform well in the laboratory environment, but there is still a long way to go from practical application. In this paper, a recursive neural network algorithm based on long and short term memory (LSTM) is proposed to realize the recognition of behavior patterns, so as to improve the accuracy of human activity behavior recognition.


2020 ◽  
Vol 2020 (17) ◽  
pp. 2-1-2-6
Author(s):  
Shih-Wei Sun ◽  
Ting-Chen Mou ◽  
Pao-Chi Chang

To improve the workout efficiency and to provide the body movement suggestions to users in a “smart gym” environment, we propose to use a depth camera for capturing a user’s body parts and mount multiple inertial sensors on the body parts of a user to generate deadlift behavior models generated by a recurrent neural network structure. The contribution of this paper is trifold: 1) The multimodal sensing signals obtained from multiple devices are fused for generating the deadlift behavior classifiers, 2) the recurrent neural network structure can analyze the information from the synchronized skeletal and inertial sensing data, and 3) a Vaplab dataset is generated for evaluating the deadlift behaviors recognizing capability in the proposed method.


Sign in / Sign up

Export Citation Format

Share Document