scholarly journals Neighborhood-Aware Attentional Representation for Multilingual Knowledge Graphs

Author(s):  
Qiannan Zhu ◽  
Xiaofei Zhou ◽  
Jia Wu ◽  
Jianlong Tan ◽  
Li Guo

Multilingual knowledge graphs constructed by entity alignment are the indispensable resources for numerous AI-related applications. Most existing entity alignment methods only use the triplet-based knowledge to find the aligned entities across multilingual knowledge graphs, they usually ignore the neighborhood subgraph knowledge of entities that implies more richer alignment information for aligning entities. In this paper, we incorporate neighborhood subgraph-level information of entities, and propose a neighborhood-aware attentional representation method NAEA for multilingual knowledge graphs. NAEA devises an attention mechanism to learn neighbor-level representation by aggregating neighbors' representations with a weighted combination. The attention mechanism enables entities not only capture different impacts of their neighbors on themselves, but also attend over their neighbors' feature representations with different importance. We evaluate our model on two real-world datasets DBP15K and DWY100K, and the experimental results show that the proposed model NAEA significantly and consistently outperforms state-of-the-art entity alignment models.

2020 ◽  
Vol 34 (05) ◽  
pp. 9612-9619
Author(s):  
Zhao Zhang ◽  
Fuzhen Zhuang ◽  
Hengshu Zhu ◽  
Zhiping Shi ◽  
Hui Xiong ◽  
...  

The rapid proliferation of knowledge graphs (KGs) has changed the paradigm for various AI-related applications. Despite their large sizes, modern KGs are far from complete and comprehensive. This has motivated the research in knowledge graph completion (KGC), which aims to infer missing values in incomplete knowledge triples. However, most existing KGC models treat the triples in KGs independently without leveraging the inherent and valuable information from the local neighborhood surrounding an entity. To this end, we propose a Relational Graph neural network with Hierarchical ATtention (RGHAT) for the KGC task. The proposed model is equipped with a two-level attention mechanism: (i) the first level is the relation-level attention, which is inspired by the intuition that different relations have different weights for indicating an entity; (ii) the second level is the entity-level attention, which enables our model to highlight the importance of different neighboring entities under the same relation. The hierarchical attention mechanism makes our model more effective to utilize the neighborhood information of an entity. Finally, we extensively validate the superiority of RGHAT against various state-of-the-art baselines.


Author(s):  
Guibing Guo ◽  
Enneng Yang ◽  
Li Shen ◽  
Xiaochun Yang ◽  
Xiaodong He

Trust-aware recommender systems have received much attention recently for their abilities to capture the influence among connected users. However, they suffer from the efficiency issue due to large amount of data and time-consuming real-valued operations. Although existing discrete collaborative filtering may alleviate this issue to some extent, it is unable to accommodate social influence. In this paper we propose a discrete trust-aware matrix factorization (DTMF) model to take dual advantages of both social relations and discrete technique for fast recommendation. Specifically, we map the latent representation of users and items into a joint hamming space by recovering the rating and trust interactions between users and items. We adopt a sophisticated discrete coordinate descent (DCD) approach to optimize our proposed model. In addition, experiments on two real-world datasets demonstrate the superiority of our approach against other state-of-the-art approaches in terms of ranking accuracy and efficiency.


Author(s):  
Hao Nie ◽  
Xianpei Han ◽  
Le Sun ◽  
Chi Man Wong ◽  
Qiang Chen ◽  
...  

Entity alignment (EA) aims to identify entities located in different knowledge graphs (KGs) that refer to the same real-world object. To learn the entity representations, most EA approaches rely on either translation-based methods which capture the local relation semantics of entities or graph convolutional networks (GCNs), which exploit the global KG structure. Afterward, the aligned entities are identified based on their distances. In this paper, we propose to jointly leverage the global KG structure and entity-specific relational triples for better entity alignment. Specifically, a global structure and local semantics preserving network is proposed to learn entity representations in a coarse-to-fine manner. Experiments on several real-world datasets show that our method significantly outperforms other entity alignment approaches and achieves the new state-of-the-art performance.


Author(s):  
Zequn Sun ◽  
Wei Hu ◽  
Qingheng Zhang ◽  
Yuzhong Qu

Embedding-based entity alignment represents different knowledge graphs (KGs) as low-dimensional embeddings and finds entity alignment by measuring the similarities between entity embeddings. Existing approaches have achieved promising results, however, they are still challenged by the lack of enough prior alignment as labeled training data. In this paper, we propose a bootstrapping approach to embedding-based entity alignment. It iteratively labels likely entity alignment as training data for learning alignment-oriented KG embeddings. Furthermore, it employs an alignment editing method to reduce error accumulation during iterations. Our experiments on real-world datasets showed that the proposed approach significantly outperformed the state-of-the-art embedding-based ones for entity alignment. The proposed alignment-oriented KG embedding, bootstrapping process and alignment editing method all contributed to the performance improvement.


Author(s):  
Jianjun Wu ◽  
Ying Sha ◽  
Bo Jiang ◽  
Jianlong Tan

Structural representations of user social influence are critical for a variety of applications such as viral marketing and recommendation products. However, existing studies only focus on capturing and preserving the structure of relations, and ignore the diversity of influence relations patterns among users. To this end, we propose a deep structural influence learning model to learn social influence structure via mining rich features of each user, and fuse information from the aligned selfnetwork component for preserving global and local structure of the influence relations among users. Experiments on two real-world datasets demonstrate that the proposed model outperforms the state-of-the-art algorithms for learning rich representations in multi-label classification task.


Author(s):  
Yunhui Guo ◽  
Congfu Xu ◽  
Hanzhang Song ◽  
Xin Wang

People consume and rate products in online shopping websites. The historical purchases of customers reflect their personal consumption habits and indicate their future shopping behaviors. Traditional preference-based recommender systems try to provide recommendations by analyzing users' feedback such as ratings and clicks. But unfortunately, most of the existing recommendation algorithms ignore the budget of the users. So they cannot avoid recommending users with products that will exceed their budgets. And they also cannot understand how the users will assign their budgets to different products. In this paper, we develop a generative model named collaborative budget-aware Poisson factorization (CBPF) to connect users' ratings and budgets. The CBPF model is intuitive and highly interpretable. We compare the proposed model with several state-of-the-art budget-unaware recommendation methods on several real-world datasets. The results show the advantage of uncovering users' budgets for recommendation.


Author(s):  
Qingheng Zhang ◽  
Zequn Sun ◽  
Wei Hu ◽  
Muhao Chen ◽  
Lingbing Guo ◽  
...  

We study the problem of embedding-based entity alignment between knowledge graphs (KGs). Previous works mainly focus on the relational structure of entities. Some further incorporate another type of features, such as attributes, for refinement. However, a vast of entity features are still unexplored or not equally treated together, which impairs the accuracy and robustness of embedding-based entity alignment. In this paper, we propose a novel framework that unifies multiple views of entities to learn embeddings for entity alignment. Specifically, we embed entities based on the views of entity names, relations and attributes, with several combination strategies. Furthermore, we design some cross-KG inference methods to enhance the alignment between two KGs. Our experiments on real-world datasets show that the proposed framework significantly outperforms the state-of-the-art embedding-based entity alignment methods. The selected views, cross-KG inference and combination strategies all contribute to the performance improvement.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1407
Author(s):  
Peng Wang ◽  
Jing Zhou ◽  
Yuzhang Liu ◽  
Xingchen Zhou

Knowledge graph embedding aims to embed entities and relations into low-dimensional vector spaces. Most existing methods only focus on triple facts in knowledge graphs. In addition, models based on translation or distance measurement cannot fully represent complex relations. As well-constructed prior knowledge, entity types can be employed to learn the representations of entities and relations. In this paper, we propose a novel knowledge graph embedding model named TransET, which takes advantage of entity types to learn more semantic features. More specifically, circle convolution based on the embeddings of entity and entity types is utilized to map head entity and tail entity to type-specific representations, then translation-based score function is used to learn the presentation triples. We evaluated our model on real-world datasets with two benchmark tasks of link prediction and triple classification. Experimental results demonstrate that it outperforms state-of-the-art models in most cases.


Author(s):  
Kaixuan Chen ◽  
Lina Yao ◽  
Dalin Zhang ◽  
Bin Guo ◽  
Zhiwen Yu

Multi-modality is an important feature of sensor based activity recognition. In this work, we consider two inherent characteristics of human activities, the spatially-temporally varying salience of features and the relations between activities and corresponding body part motions. Based on these, we propose a multi-agent spatial-temporal attention model. The spatial-temporal attention mechanism helps intelligently select informative modalities and their active periods. And the multiple agents in the proposed model represent activities with collective motions across body parts by independently selecting modalities associated with single motions. With a joint recognition goal, the agents share gained information and coordinate their selection policies to learn the optimal recognition model. The experimental results on four real-world datasets demonstrate that the proposed model outperforms the state-of-the-art methods.


2019 ◽  
Vol 9 (18) ◽  
pp. 3908 ◽  
Author(s):  
Jintae Kim ◽  
Shinhyeok Oh ◽  
Oh-Woog Kwon ◽  
Harksoo Kim

To generate proper responses to user queries, multi-turn chatbot models should selectively consider dialogue histories. However, previous chatbot models have simply concatenated or averaged vector representations of all previous utterances without considering contextual importance. To mitigate this problem, we propose a multi-turn chatbot model in which previous utterances participate in response generation using different weights. The proposed model calculates the contextual importance of previous utterances by using an attention mechanism. In addition, we propose a training method that uses two types of Wasserstein generative adversarial networks to improve the quality of responses. In experiments with the DailyDialog dataset, the proposed model outperformed the previous state-of-the-art models based on various performance measures.


Sign in / Sign up

Export Citation Format

Share Document