scholarly journals Mindful Active Learning

Author(s):  
Zhila Esna Ashari ◽  
Hassan Ghasemzadeh

We propose a novel active learning framework for activity recognition using wearable sensors. Our work is unique in that it takes physical and cognitive limitations of the oracle into account when selecting sensor data to be annotated by the oracle. Our approach is inspired by human-beings' limited capacity to respond to external stimulus such as responding to a prompt on their mobile devices. This capacity constraint is manifested not only in the number of queries that a person can respond to in a given time-frame but also in the lag between the time that a query is made and when it is responded to. We introduce the notion of mindful active learning and propose a computational framework, called EMMA, to maximize the active learning performance taking informativeness of sensor data, query budget, and human memory into account. We formulate this optimization problem, propose an approach to model memory retention, discuss complexity of the problem, and propose a greedy heuristic to solve the problem. We demonstrate the effectiveness of our approach on three publicly available datasets and by simulating oracles with various memory strengths. We show that the activity recognition accuracy ranges from 21% to 97% depending on memory strength, query budget, and difficulty of the machine learning task. Our results also indicate that EMMA achieves an accuracy level that is, on average, 13.5% higher than the case when only informativeness of the sensor data is considered for active learning. Additionally, we show that the performance of our approach is at most 20% less than experimental upper-bound and up to 80% higher than experimental lower-bound. We observe that mindful active learning is most beneficial when query budget is small and/or oracle's memory is weak, thus emphasizing contributions of our work in human-centered mobile health settings and for elderly with cognitive impairments.

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 194
Author(s):  
Sarah Gonzalez ◽  
Paul Stegall ◽  
Harvey Edwards ◽  
Leia Stirling ◽  
Ho Chit Siu

The field of human activity recognition (HAR) often utilizes wearable sensors and machine learning techniques in order to identify the actions of the subject. This paper considers the activity recognition of walking and running while using a support vector machine (SVM) that was trained on principal components derived from wearable sensor data. An ablation analysis is performed in order to select the subset of sensors that yield the highest classification accuracy. The paper also compares principal components across trials to inform the similarity of the trials. Five subjects were instructed to perform standing, walking, running, and sprinting on a self-paced treadmill, and the data were recorded while using surface electromyography sensors (sEMGs), inertial measurement units (IMUs), and force plates. When all of the sensors were included, the SVM had over 90% classification accuracy using only the first three principal components of the data with the classes of stand, walk, and run/sprint (combined run and sprint class). It was found that sensors that were placed only on the lower leg produce higher accuracies than sensors placed on the upper leg. There was a small decrease in accuracy when the force plates are ablated, but the difference may not be operationally relevant. Using only accelerometers without sEMGs was shown to decrease the accuracy of the SVM.


2020 ◽  
Vol 10 (20) ◽  
pp. 7122
Author(s):  
Ahmad Jalal ◽  
Mouazma Batool ◽  
Kibum Kim

The classification of human activity is becoming one of the most important areas of human health monitoring and physical fitness. With the use of physical activity recognition applications, people suffering from various diseases can be efficiently monitored and medical treatment can be administered in a timely fashion. These applications could improve remote services for health care monitoring and delivery. However, the fixed health monitoring devices provided in hospitals limits the subjects’ movement. In particular, our work reports on wearable sensors that provide remote monitoring that periodically checks human health through different postures and activities to give people timely and effective treatment. In this paper, we propose a novel human activity recognition (HAR) system with multiple combined features to monitor human physical movements from continuous sequences via tri-axial inertial sensors. The proposed HAR system filters 1D signals using a notch filter that examines the lower/upper cutoff frequencies to calculate the optimal wearable sensor data. Then, it calculates multiple combined features, i.e., statistical features, Mel Frequency Cepstral Coefficients, and Gaussian Mixture Model features. For the classification and recognition engine, a Decision Tree classifier optimized by the Binary Grey Wolf Optimization algorithm is proposed. The proposed system is applied and tested on three challenging benchmark datasets to assess the feasibility of the model. The experimental results show that our proposed system attained an exceptional level of performance compared to conventional solutions. We achieved accuracy rates of 88.25%, 93.95%, and 96.83% over MOTIONSENSE, MHEALTH, and the proposed self-annotated IM-AccGyro human-machine dataset, respectively.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Jian Sun ◽  
Yongling Fu ◽  
Shengguang Li ◽  
Jie He ◽  
Cheng Xu ◽  
...  

Human activity recognition (HAR) problems have traditionally been solved by using engineered features obtained by heuristic methods. These methods ignore the time information of the streaming sensor data and cannot achieve sequential human activity recognition. With the use of traditional statistical learning methods, results could easily plunge into the local minimum other than the global optimal and also face the problem of low efficiency. Therefore, we propose a hybrid deep framework based on convolution operations, LSTM recurrent units, and ELM classifier; the advantages are as follows: (1) does not require expert knowledge in extracting features; (2) models temporal dynamics of features; and (3) is more suitable to classify the extracted features and shortens the runtime. All of these unique advantages make it superior to other HAR algorithms. We evaluate our framework on OPPORTUNITY dataset which has been used in OPPORTUNITY challenge. Results show that our proposed method outperforms deep nonrecurrent networks by 6%, outperforming the previous reported best result by 8%. When compared with neural network using BP algorithm, testing time reduced by 38%.


2019 ◽  
Author(s):  
Jessica Sena ◽  
William Robson Schwartz

Sensor-based Human Activity Recognition (HAR) provides valuable knowledge to many areas. Recently, wearable devices have gained space as a relevant source of data. However, there are two issues: large number of heterogeneous sensors available and the temporal nature of the sensor data. To handle these issues, we propose a multimodal approach that processes each sensor separately and, through an ensemble of Deep Convolution Neural Networks (DCNN), extracts information from multiple temporal scales of the sensor data. In this ensemble, we use a convolutional kernel with a different height for each DCNN. Considering that the number of rows in the sensor data reflects the data captured over time, each kernel height reflects a temporal scale from which we can extract patterns. Consequently, our approach is able to extract information from simple movement patterns such as a wrist twist when picking up a spoon, to complex movements such as the human gait. This multimodal and multi-temporal approach outperforms previous state-of-the-art works in seven important datasets using two different protocols. In addition, we demonstrate that the use of our proposed set of kernels improves sensor-based HAR in another multi-kernel approach, the widely employed inception network.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5479
Author(s):  
Nora Alhammad ◽  
Hmood Al-Dossari

The research area of activity recognition is fast growing with diverse applications. However, advances in this field have not yet been used to monitor the rehabilitation of individuals with spinal cord injury. Noteworthily, relying on patient surveys to assess adherence can undermine the outcomes of rehabilitation. Therefore, this paper presents and implements a systematic activity recognition method to recognize physical activities applied by subjects during rehabilitation for spinal cord injury. In the method, raw sensor data are divided into fragments using a dynamic segmentation technique, providing higher recognition performance compared to the sliding window, which is a commonly used approach. To develop the method and build a predictive model, a machine learning approach was adopted. The proposed method was evaluated on a dataset obtained from a single wrist-worn accelerometer. The results demonstrated the effectiveness of the proposed method in recognizing all of the activities that were examined, and it achieved an overall accuracy of 96.86%.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1685
Author(s):  
Sakorn Mekruksavanich ◽  
Anuchit Jitpattanakul

Sensor-based human activity recognition (S-HAR) has become an important and high-impact topic of research within human-centered computing. In the last decade, successful applications of S-HAR have been presented through fruitful academic research and industrial applications, including for healthcare monitoring, smart home controlling, and daily sport tracking. However, the growing requirements of many current applications for recognizing complex human activities (CHA) have begun to attract the attention of the HAR research field when compared with simple human activities (SHA). S-HAR has shown that deep learning (DL), a type of machine learning based on complicated artificial neural networks, has a significant degree of recognition efficiency. Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are two different types of DL methods that have been successfully applied to the S-HAR challenge in recent years. In this paper, we focused on four RNN-based DL models (LSTMs, BiLSTMs, GRUs, and BiGRUs) that performed complex activity recognition tasks. The efficiency of four hybrid DL models that combine convolutional layers with the efficient RNN-based models was also studied. Experimental studies on the UTwente dataset demonstrated that the suggested hybrid RNN-based models achieved a high level of recognition performance along with a variety of performance indicators, including accuracy, F1-score, and confusion matrix. The experimental results show that the hybrid DL model called CNN-BiGRU outperformed the other DL models with a high accuracy of 98.89% when using only complex activity data. Moreover, the CNN-BiGRU model also achieved the highest recognition performance in other scenarios (99.44% by using only simple activity data and 98.78% with a combination of simple and complex activities).


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Gloria Vergara-Diaz ◽  
Jean-Francois Daneault ◽  
Federico Parisi ◽  
Chen Admati ◽  
Christina Alfonso ◽  
...  

AbstractParkinson’s disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms. Dyskinesia and motor fluctuations are complications of PD medications. An objective measure of on/off time with/without dyskinesia has been sought for some time because it would facilitate the titration of medications. The objective of the dataset herein presented is to assess if wearable sensor data can be used to generate accurate estimates of limb-specific symptom severity. Nineteen subjects with PD experiencing motor fluctuations were asked to wear a total of five wearable sensors on both forearms and shanks, as well as on the lower back. Accelerometer data was collected for four days, including two laboratory visits lasting 3 to 4 hours each while the remainder of the time was spent at home and in the community. During the laboratory visits, subjects performed a battery of motor tasks while clinicians rated limb-specific symptom severity. At home, subjects were instructed to use a smartphone app that guided the periodic performance of a set of motor tasks.


2021 ◽  
Vol 15 (6) ◽  
pp. 1-17
Author(s):  
Chenglin Li ◽  
Carrie Lu Tong ◽  
Di Niu ◽  
Bei Jiang ◽  
Xiao Zuo ◽  
...  

Deep learning models for human activity recognition (HAR) based on sensor data have been heavily studied recently. However, the generalization ability of deep models on complex real-world HAR data is limited by the availability of high-quality labeled activity data, which are hard to obtain. In this article, we design a similarity embedding neural network that maps input sensor signals onto real vectors through carefully designed convolutional and Long Short-Term Memory (LSTM) layers. The embedding network is trained with a pairwise similarity loss, encouraging the clustering of samples from the same class in the embedded real space, and can be effectively trained on a small dataset and even on a noisy dataset with mislabeled samples. Based on the learned embeddings, we further propose both nonparametric and parametric approaches for activity recognition. Extensive evaluation based on two public datasets has shown that the proposed similarity embedding network significantly outperforms state-of-the-art deep models on HAR classification tasks, is robust to mislabeled samples in the training set, and can also be used to effectively denoise a noisy dataset.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 111
Author(s):  
Pengjia Tu ◽  
Junhuai Li ◽  
Huaijun Wang ◽  
Ting Cao ◽  
Kan Wang

Human activity recognition (HAR) has vital applications in human–computer interaction, somatosensory games, and motion monitoring, etc. On the basis of the human motion accelerate sensor data, through a nonlinear analysis of the human motion time series, a novel method for HAR that is based on non-linear chaotic features is proposed in this paper. First, the C-C method and G-P algorithm are used to, respectively, compute the optimal delay time and embedding dimension. Additionally, a Reconstructed Phase Space (RPS) is formed while using time-delay embedding for the human accelerometer motion sensor data. Subsequently, a two-dimensional chaotic feature matrix is constructed, where the chaotic feature is composed of the correlation dimension and largest Lyapunov exponent (LLE) of attractor trajectory in the RPS. Next, the classification algorithms are used in order to classify and recognize the two different activity classes, i.e., basic and transitional activities. The experimental results show that the chaotic feature has a higher accuracy than traditional time and frequency domain features.


Sign in / Sign up

Export Citation Format

Share Document