scholarly journals Heterogeneous Gaussian Mechanism: Preserving Differential Privacy in Deep Learning with Provable Robustness

Author(s):  
NhatHai Phan ◽  
Minh N. Vu ◽  
Yang Liu ◽  
Ruoming Jin ◽  
Dejing Dou ◽  
...  

In this paper, we propose a novel Heterogeneous Gaussian Mechanism (HGM) to preserve differential privacy in deep neural networks, with provable robustness against adversarial examples. We first relax the constraint of the privacy budget in the traditional Gaussian Mechanism from (0, 1] to (0, infty), with a new bound of the noise scale to preserve differential privacy. The noise in our mechanism can be arbitrarily redistributed, offering a distinctive ability to address the trade-off between model utility and privacy loss. To derive provable robustness, our HGM is applied to inject Gaussian noise into the first hidden layer. Then, a tighter robustness bound is proposed. Theoretical analysis and thorough evaluations show that our mechanism notably improves the robustness of differentially private deep neural networks, compared with baseline approaches, under a variety of model attacks.

Author(s):  
Anibal Pedraza ◽  
Oscar Deniz ◽  
Gloria Bueno

AbstractThe phenomenon of Adversarial Examples has become one of the most intriguing topics associated to deep learning. The so-called adversarial attacks have the ability to fool deep neural networks with inappreciable perturbations. While the effect is striking, it has been suggested that such carefully selected injected noise does not necessarily appear in real-world scenarios. In contrast to this, some authors have looked for ways to generate adversarial noise in physical scenarios (traffic signs, shirts, etc.), thus showing that attackers can indeed fool the networks. In this paper we go beyond that and show that adversarial examples also appear in the real-world without any attacker or maliciously selected noise involved. We show this by using images from tasks related to microscopy and also general object recognition with the well-known ImageNet dataset. A comparison between these natural and the artificially generated adversarial examples is performed using distance metrics and image quality metrics. We also show that the natural adversarial examples are in fact at a higher distance from the originals that in the case of artificially generated adversarial examples.


Author(s):  
Osval Antonio Montesinos López ◽  
Abelardo Montesinos López ◽  
Jose Crossa

AbstractThis chapter provides elements for implementing deep neural networks (deep learning) for continuous outcomes. We give details of the hyperparameters to be tuned in deep neural networks and provide a general guide for doing this task with more probability of success. Then we explain the most popular deep learning frameworks that can be used to implement these models as well as the most popular optimizers available in many software programs for deep learning. Several practical examples with plant breeding data for implementing deep neural networks in the Keras library are outlined. These examples take into account many components in the predictor as well many hyperparameters (hidden layer, number of neurons, learning rate, optimizers, penalization, etc.) for which we also illustrate how the tuning process can be done to increase the probability of a successful application.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2407 ◽  
Author(s):  
Ghimire ◽  
Deo ◽  
Raj ◽  
Mi

Solar energy predictive models designed to emulate the long-term (e.g., monthly) global solar radiation (GSR) trained with satellite-derived predictors can be employed as decision tenets in the exploration, installation and management of solar energy production systems in remote and inaccessible solar-powered sites. In spite of a plethora of models designed for GSR prediction, deep learning, representing a state-of-the-art intelligent tool, remains an attractive approach for renewable energy exploration, monitoring and forecasting. In this paper, algorithms based on deep belief networks and deep neural networks are designed to predict long-term GSR. Deep learning algorithms trained with publicly-accessible Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data are tested in Australia’s solar cities to predict the monthly GSR: single hidden layer and ensemble models. The monthly-scale MODIS-derived predictors (2003–2018) are adopted, with 15 diverse feature selection approaches including a Gaussian Emulation Machine for sensitivity analysis used to select optimal MODIS-predictor variables to simulate GSR against ground-truth values. Several statistical score metrics are adopted to comprehensively verify surface GSR simulations to ascertain the practicality of deep belief and deep neural networks. In the testing phase, deep learning models generate significantly lower absolute percentage bias (≤3%) and high Kling–Gupta efficiency (≥97.5%) values compared to the single hidden layer and ensemble model. This study ascertains that the optimal MODIS input variables employed in GSR prediction for solar energy applications can be relatively different for diverse sites, advocating a need for feature selection prior to the modelling of GSR. The proposed deep learning approach can be adopted to identify solar energy potential proactively in locations where it is impossible to install an environmental monitoring data acquisition instrument. Hence, MODIS and other related satellite-derived predictors can be incorporated for solar energy prediction as a strategy for long-term renewable energy exploration.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hyun Kwon ◽  
Jang-Woon Baek

Deep learning technology has been used to develop improved license plate recognition (LPR) systems. In particular, deep neural networks have brought significant improvements in the LPR system. However, deep neural networks are vulnerable to adversarial examples. In the existing LPR system, adversarial examples study specific spots that are easily identifiable by humans or require human feedback. In this paper, we propose a method of generating adversarial examples in the license plate, which has no human feedback and is difficult to identify by humans. In the proposed method, adversarial noise is added only to the license plate among the entire image to create an adversarial example that is erroneously recognized by the LPR system without being identified by humans. Experiments were performed using the baza silka dataset, and TensorFlow was used as the machine learning library. When epsilon is 0.6 for the first type, and alpha and the iteration of the second type are 0.4 and 1000, respectively, the adversarial examples generated by the first and second type generation methods are reduced to 20% and 15% accuracy in the LPR system.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Zhidong Shen ◽  
Ting Zhong

Artificial Intelligence has been widely applied today, and the subsequent privacy leakage problems have also been paid attention to. Attacks such as model inference attacks on deep neural networks can easily extract user information from neural networks. Therefore, it is necessary to protect privacy in deep learning. Differential privacy, as a popular topic in privacy-preserving in recent years, which provides rigorous privacy guarantee, can also be used to preserve privacy in deep learning. Although many articles have proposed different methods to combine differential privacy and deep learning, there are no comprehensive papers to analyze and compare the differences and connections between these technologies. For this purpose, this paper is proposed to compare different differential private methods in deep learning. We comparatively analyze and classify several deep learning models under differential privacy. Meanwhile, we also pay attention to the application of differential privacy in Generative Adversarial Networks (GANs), comparing and analyzing these models. Finally, we summarize the application of differential privacy in deep neural networks.


2019 ◽  
Vol 12 (3) ◽  
pp. 156-161 ◽  
Author(s):  
Aman Dureja ◽  
Payal Pahwa

Background: In making the deep neural network, activation functions play an important role. But the choice of activation functions also affects the network in term of optimization and to retrieve the better results. Several activation functions have been introduced in machine learning for many practical applications. But which activation function should use at hidden layer of deep neural networks was not identified. Objective: The primary objective of this analysis was to describe which activation function must be used at hidden layers for deep neural networks to solve complex non-linear problems. Methods: The configuration for this comparative model was used by using the datasets of 2 classes (Cat/Dog). The number of Convolutional layer used in this network was 3 and the pooling layer was also introduced after each layer of CNN layer. The total of the dataset was divided into the two parts. The first 8000 images were mainly used for training the network and the next 2000 images were used for testing the network. Results: The experimental comparison was done by analyzing the network by taking different activation functions on each layer of CNN network. The validation error and accuracy on Cat/Dog dataset were analyzed using activation functions (ReLU, Tanh, Selu, PRelu, Elu) at number of hidden layers. Overall the Relu gave best performance with the validation loss at 25th Epoch 0.3912 and validation accuracy at 25th Epoch 0.8320. Conclusion: It is found that a CNN model with ReLU hidden layers (3 hidden layers here) gives best results and improve overall performance better in term of accuracy and speed. These advantages of ReLU in CNN at number of hidden layers are helpful to effectively and fast retrieval of images from the databases.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1579
Author(s):  
Dongqi Wang ◽  
Qinghua Meng ◽  
Dongming Chen ◽  
Hupo Zhang ◽  
Lisheng Xu

Automatic detection of arrhythmia is of great significance for early prevention and diagnosis of cardiovascular disease. Traditional feature engineering methods based on expert knowledge lack multidimensional and multi-view information abstraction and data representation ability, so the traditional research on pattern recognition of arrhythmia detection cannot achieve satisfactory results. Recently, with the increase of deep learning technology, automatic feature extraction of ECG data based on deep neural networks has been widely discussed. In order to utilize the complementary strength between different schemes, in this paper, we propose an arrhythmia detection method based on the multi-resolution representation (MRR) of ECG signals. This method utilizes four different up to date deep neural networks as four channel models for ECG vector representations learning. The deep learning based representations, together with hand-crafted features of ECG, forms the MRR, which is the input of the downstream classification strategy. The experimental results of big ECG dataset multi-label classification confirm that the F1 score of the proposed method is 0.9238, which is 1.31%, 0.62%, 1.18% and 0.6% higher than that of each channel model. From the perspective of architecture, this proposed method is highly scalable and can be employed as an example for arrhythmia recognition.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dipendra Jha ◽  
Vishu Gupta ◽  
Logan Ward ◽  
Zijiang Yang ◽  
Christopher Wolverton ◽  
...  

AbstractThe application of machine learning (ML) techniques in materials science has attracted significant attention in recent years, due to their impressive ability to efficiently extract data-driven linkages from various input materials representations to their output properties. While the application of traditional ML techniques has become quite ubiquitous, there have been limited applications of more advanced deep learning (DL) techniques, primarily because big materials datasets are relatively rare. Given the demonstrated potential and advantages of DL and the increasing availability of big materials datasets, it is attractive to go for deeper neural networks in a bid to boost model performance, but in reality, it leads to performance degradation due to the vanishing gradient problem. In this paper, we address the question of how to enable deeper learning for cases where big materials data is available. Here, we present a general deep learning framework based on Individual Residual learning (IRNet) composed of very deep neural networks that can work with any vector-based materials representation as input to build accurate property prediction models. We find that the proposed IRNet models can not only successfully alleviate the vanishing gradient problem and enable deeper learning, but also lead to significantly (up to 47%) better model accuracy as compared to plain deep neural networks and traditional ML techniques for a given input materials representation in the presence of big data.


Sign in / Sign up

Export Citation Format

Share Document