scholarly journals Novelty Detection via Contrastive Learning with Negative Data Augmentation

Author(s):  
Chengwei Chen ◽  
Yuan Xie ◽  
Shaohui Lin ◽  
Ruizhi Qiao ◽  
Jian Zhou ◽  
...  

Novelty detection is the process of determining whether a query example differs from the learned training distribution. Previous generative adversarial networks based methods and self-supervised approaches suffer from instability training, mode dropping, and low discriminative ability. We overcome such problems by introducing a novel decoder-encoder framework. Firstly, a generative network (decoder) learns the representation by mapping the initialized latent vector to an image. In particular, this vector is initialized by considering the entire distribution of training data to avoid the problem of mode-dropping. Secondly, a contrastive network (encoder) aims to ``learn to compare'' through mutual information estimation, which directly helps the generative network to obtain a more discriminative representation by using a negative data augmentation strategy. Extensive experiments show that our model has significant superiority over cutting-edge novelty detectors and achieves new state-of-the-art results on various novelty detection benchmarks, e.g. CIFAR10 and DCASE. Moreover, our model is more stable for training in a non-adversarial manner, compared to other adversarial based novelty detection methods.

2019 ◽  
Vol 8 (9) ◽  
pp. 390 ◽  
Author(s):  
Kun Zheng ◽  
Mengfei Wei ◽  
Guangmin Sun ◽  
Bilal Anas ◽  
Yu Li

Vehicle detection based on very high-resolution (VHR) remote sensing images is beneficial in many fields such as military surveillance, traffic control, and social/economic studies. However, intricate details about the vehicle and the surrounding background provided by VHR images require sophisticated analysis based on massive data samples, though the number of reliable labeled training data is limited. In practice, data augmentation is often leveraged to solve this conflict. The traditional data augmentation strategy uses a combination of rotation, scaling, and flipping transformations, etc., and has limited capabilities in capturing the essence of feature distribution and proving data diversity. In this study, we propose a learning method named Vehicle Synthesis Generative Adversarial Networks (VS-GANs) to generate annotated vehicles from remote sensing images. The proposed framework has one generator and two discriminators, which try to synthesize realistic vehicles and learn the background context simultaneously. The method can quickly generate high-quality annotated vehicle data samples and greatly helps in the training of vehicle detectors. Experimental results show that the proposed framework can synthesize vehicles and their background images with variations and different levels of details. Compared with traditional data augmentation methods, the proposed method significantly improves the generalization capability of vehicle detectors. Finally, the contribution of VS-GANs to vehicle detection in VHR remote sensing images was proved in experiments conducted on UCAS-AOD and NWPU VHR-10 datasets using up-to-date target detection frameworks.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1497
Author(s):  
Harold Achicanoy ◽  
Deisy Chaves ◽  
Maria Trujillo

Deep learning applications on computer vision involve the use of large-volume and representative data to obtain state-of-the-art results due to the massive number of parameters to optimise in deep models. However, data are limited with asymmetric distributions in industrial applications due to rare cases, legal restrictions, and high image-acquisition costs. Data augmentation based on deep learning generative adversarial networks, such as StyleGAN, has arisen as a way to create training data with symmetric distributions that may improve the generalisation capability of built models. StyleGAN generates highly realistic images in a variety of domains as a data augmentation strategy but requires a large amount of data to build image generators. Thus, transfer learning in conjunction with generative models are used to build models with small datasets. However, there are no reports on the impact of pre-trained generative models, using transfer learning. In this paper, we evaluate a StyleGAN generative model with transfer learning on different application domains—training with paintings, portraits, Pokémon, bedrooms, and cats—to generate target images with different levels of content variability: bean seeds (low variability), faces of subjects between 5 and 19 years old (medium variability), and charcoal (high variability). We used the first version of StyleGAN due to the large number of publicly available pre-trained models. The Fréchet Inception Distance was used for evaluating the quality of synthetic images. We found that StyleGAN with transfer learning produced good quality images, being an alternative for generating realistic synthetic images in the evaluated domains.


2021 ◽  
Vol 2021 (1) ◽  
pp. 16-20
Author(s):  
Apostolia Tsirikoglou ◽  
Marcus Gladh ◽  
Daniel Sahlin ◽  
Gabriel Eilertsen ◽  
Jonas Unger

This paper presents an evaluation of how data augmentation and inter-class transformations can be used to synthesize training data in low-data scenarios for single-image weather classification. In such scenarios, augmentations is a critical component, but there is a limit to how much improvements can be gained using classical augmentation strategies. Generative adversarial networks (GAN) have been demonstrated to generate impressive results, and have also been successful as a tool for data augmentation, but mostly for images of limited diversity, such as in medical applications. We investigate the possibilities in using generative augmentations for balancing a small weather classification dataset, where one class has a reduced number of images. We compare intra-class augmentations by means of classical transformations as well as noise-to-image GANs, to interclass augmentations where images from another class are transformed to the underrepresented class. The results show that it is possible to take advantage of GANs for inter-class augmentations to balance a small dataset for weather classification. This opens up for future work on GAN-based augmentations in scenarios where data is both diverse and scarce.


2020 ◽  
Author(s):  
Kun Chen ◽  
Manning Wang ◽  
Zhijian Song

Abstract Background: Deep neural networks have been widely used in medical image segmentation and have achieved state-of-the-art performance in many tasks. However, different from the segmentation of natural images or video frames, the manual segmentation of anatomical structures in medical images needs high expertise so the scale of labeled training data is very small, which is a major obstacle for the improvement of deep neural networks performance in medical image segmentation. Methods: In this paper, we proposed a new end-to-end generation-segmentation framework by integrating Generative Adversarial Networks (GAN) and a segmentation network and train them simultaneously. The novelty is that during the training of the GAN, the intermediate synthetic images generated by the generator of the GAN are used to pre-train the segmentation network. As the advances of the training of the GAN, the synthetic images evolve gradually from being very coarse to containing more realistic textures, and these images help train the segmentation network gradually. After the training of GAN, the segmentation network is then fine-tuned by training with the real labeled images. Results: We evaluated the proposed framework on four different datasets, including 2D cardiac dataset and lung dataset, 3D prostate dataset and liver dataset. Compared with original U-net and CE-Net, our framework can achieve better segmentation performance. Our framework also can get better segmentation results than U-net on small datasets. In addition, our framework is more effective than the usual data augmentation methods. Conclusions: The proposed framework can be used as a pre-train method of segmentation network, which helps to get a better segmentation result. Our method can solve the shortcomings of current data augmentation methods to some extent.


Life ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1013
Author(s):  
Xue Zhou ◽  
Xin Zhu ◽  
Keijiro Nakamura ◽  
Mahito Noro

The electrocardiogram (ECG) is widely used for cardiovascular disease diagnosis and daily health monitoring. Before ECG analysis, ECG quality screening is an essential but time-consuming and experience-dependent work for technicians. An automatic ECG quality assessment method can reduce unnecessary time loss to help cardiologists perform diagnosis. This study aims to develop an automatic quality assessment system to search qualified ECGs for interpretation. The proposed system consists of data augmentation and quality assessment parts. For data augmentation, we train a conditional generative adversarial networks model to get an ECG segment generator, and thus to increase the number of training data. Then, we pre-train a deep quality assessment model based on a training dataset composed of real and generated ECG. Finally, we fine-tune the proposed model using real ECG and validate it on two different datasets composed of real ECG. The proposed system has a generalized performance on the two validation datasets. The model’s accuracy is 97.1% and 96.4%, respectively for the two datasets. The proposed method outperforms a shallow neural network model, and also a deep neural network models without being pre-trained by generated ECG. The proposed system demonstrates improved performance in the ECG quality assessment, and it has the potential to be an initial ECG quality screening tool in clinical practice.


2021 ◽  
Author(s):  
Saman Motamed ◽  
Patrik Rogalla ◽  
Farzad Khalvati

Abstract Successful training of convolutional neural networks (CNNs) requires a substantial amount of data. With small datasets networks generalize poorly. Data Augmentation techniques improve the generalizability of neural networks by using existing training data more effectively. Standard data augmentation methods, however, produce limited plausible alternative data. Generative Adversarial Networks (GANs) have been utilized to generate new data and improve the performance of CNNs. Nevertheless, data augmentation techniques for training GANs are under-explored compared to CNNs. In this work, we propose a new GAN architecture for augmentation of chest X-rays for semi-supervised detection of pneumonia and COVID-19 using generative models. We show that the proposed GAN can be used to effectively augment data and improve classification accuracy of disease in chest X-rays for pneumonia and COVID-19. We compare our augmentation GAN model with Deep Convolutional GAN and traditional augmentation methods (rotate, zoom, etc) on two different X-ray datasets and show our GAN-based augmentation method surpasses other augmentation methods for training a GAN in detecting anomalies in X-ray images.


2020 ◽  
Vol 10 (24) ◽  
pp. 9133
Author(s):  
Lloyd A. Courtenay ◽  
Diego González-Aguilera

The fossil record is notorious for being incomplete and distorted, frequently conditioning the type of knowledge that can be extracted from it. In many cases, this often leads to issues when performing complex statistical analyses, such as classification tasks, predictive modelling, and variance analyses, such as those used in Geometric Morphometrics. Here different Generative Adversarial Network architectures are experimented with, testing the effects of sample size and domain dimensionality on model performance. For model evaluation, robust statistical methods were used. Each of the algorithms were observed to produce realistic data. Generative Adversarial Networks using different loss functions produced multidimensional synthetic data significantly equivalent to the original training data. Conditional Generative Adversarial Networks were not as successful. The methods proposed are likely to reduce the impact of sample size and bias on a number of statistical learning applications. While Generative Adversarial Networks are not the solution to all sample-size related issues, combined with other pre-processing steps these limitations may be overcome. This presents a valuable means of augmenting geometric morphometric datasets for greater predictive visualization.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazuma Kokomoto ◽  
Rena Okawa ◽  
Kazuhiko Nakano ◽  
Kazunori Nozaki

AbstractDentists need experience with clinical cases to practice specialized skills. However, the need to protect patient's private information limits their ability to utilize intraoral images obtained from clinical cases. In this study, since generating realistic images could make it possible to utilize intraoral images, progressive growing of generative adversarial networks are used to generate intraoral images. A total of 35,254 intraoral images were used as training data with resolutions of 128 × 128, 256 × 256, 512 × 512, and 1024 × 1024. The results of the training datasets with and without data augmentation were compared. The Sliced Wasserstein Distance was calculated to evaluate the generated images. Next, 50 real images and 50 generated images for each resolution were randomly selected and shuffled. 12 pediatric dentists were asked to observe these images and assess whether they were real or generated. The d prime of the 1024 × 1024 images was significantly higher than that of the other resolutions. In conclusion, generated intraoral images with resolutions of 512 × 512 or lower were so realistic that the dentists could not distinguish whether they were real or generated. This implies that the generated images can be used in dental education or data augmentation for deep learning, without privacy restrictions.


Author(s):  
Lloyd A. Courtenay ◽  
Diego González-Aguilera

The fossil record is notorious for being incomplete and distorted, frequently conditioning the type of knowledge that can be extracted from it. In many cases, this often leads to issues when performing complex statistical analyses, such as classification tasks, predictive modelling, and variance analyses, such as those used in Geometric Morphometrics. Here different Generative Adversarial Network architectures are experimented with, testing the effects of sample size and domain dimensionality on model performance. For model evaluation, robust statistical methods were used. Each of the algorithms were observed to produce realistic data. Generative Adversarial Networks using different loss functions produced multidimensional synthetic data significantly equivalent to the original training data. Conditional Generative Adversarial Networks were not as successful. The methods proposed are likely to reduce the impact of sample size and bias on a number of statistical learning applications. While Generative Adversarial Networks are not the solution to all sample-size related issues, combined with other pre-processing steps these limitations may be overcome. This presents a valuable means of augmenting geometric morphometric datasets for greater predictive visualization.


2021 ◽  
Vol 11 (7) ◽  
pp. 3086
Author(s):  
Ricardo Silva Peres ◽  
Miguel Azevedo ◽  
Sara Oleiro Araújo ◽  
Magno Guedes ◽  
Fábio Miranda ◽  
...  

The technological advances brought forth by the Industry 4.0 paradigm have renewed the disruptive potential of artificial intelligence in the manufacturing sector, building the data-driven era on top of concepts such as Cyber–Physical Systems and the Internet of Things. However, data availability remains a major challenge for the success of these solutions, particularly concerning those based on deep learning approaches. Specifically in the quality inspection of structural adhesive applications, found commonly in the automotive domain, defect data with sufficient variety, volume and quality is generally costly, time-consuming and inefficient to obtain, jeopardizing the viability of such approaches due to data scarcity. To mitigate this, we propose a novel approach to generate synthetic training data for this application, leveraging recent breakthroughs in training generative adversarial networks with limited data to improve the performance of automated inspection methods based on deep learning, especially for imbalanced datasets. Preliminary results in a real automotive pilot cell show promise in this direction, with the approach being able to generate realistic adhesive bead images and consequently object detection models showing improved mean average precision at different thresholds when trained on the augmented dataset. For reproducibility purposes, the model weights, configurations and data encompassed in this study are made publicly available.


Sign in / Sign up

Export Citation Format

Share Document