scholarly journals Sources of Heavy Minerals of the Neogene Clastics at Bekhme, Northern Iraq

2020 ◽  
pp. 2610-2618
Author(s):  
Saif Al-Ddin A. AL-Rawi ◽  
Suhad Khalaf A. Razzak

Ten samples were collected from Injana and Mukdadiya Formations, representing 5 samples of fine grain sandstone (F) and 5 samples of very fine grain sandstone (VF). The heavy metals study showed that the opaque mineral recorded the highest percentage in comparison with other heavy metals. While, transparent minerals, including unstable minerals (Amphibole including Hornblend and Glaucophane) and (pyroxene including Orthopyroxene and Clinopyroxene), Metastable minerals including (Epidote, staurolite, Garnet, Kyanite) indicated metamorphic source, Ultrastable minerals (Zircon, Rutile, Tourmaline), Mica group (chlorite, biotite and muscovite). These accumulations indicate that the heavy minerals are derived from mafic igneous and metamorphic rocks mostly, as well as acidic igneous and reworked sediments. Ternary diagram of heavy metals stability showed that they are moderately stable due to the effect of the opaque mineral that have highest attention. Both sandstones for the Injana and Mukdadiya formations are derived from active continental margins. This source rocks may be represented by Taurus and Zagros Mountains.

2021 ◽  
Vol 54 (1C) ◽  
pp. 30-40
Author(s):  
Abbas Ali

Mukdadiya Formation (Late Miocene-Pliocene) exposed in the northeastern limb of Baba anticline fold in Kirkuk structure. The selected section was located in the Shoraw area, northeastern Kirkuk city, Iraq. Twenty sandstone samples were collected to study heavy minerals. The study indicates that opaque and epidote group minerals forming the main heavy minerals, followed by amphibole, pyroxene, garnet, and chlorite. According to heavy minerals assemblage, the source rocks are interpreted to be composed essentially of sedimentary followed by igneous and metamorphic rocks and the high contents of unstable and metastable minerals confirm their direct derivation from the adjacent primary source. Ultra-stable and metastable heavy minerals relationship indicated that the sandstone of the Mukdadiya Formation is immature and moderate stability and showed that these minerals couldn't be transported for very long distances close to the source area and not represents polycyclic grain. MF-MT-GM Ternary diagram showed that the studied samples fall within the field of active continental margins which is characterized by a relatively high percentage of minerals (MF˃GM) derived from mafic magmatic rocks.


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 445
Author(s):  
Dorota Chmielowska ◽  
Dorota Salata

This study is focused on the loess-like deposits accumulated on glaciofluvial fans of the Czarny Dunajec River in the Orava Basin (Southern Poland). The deposition of these sediments took place during three cold intervals of the Pleistocene: Würm, Riss, and Günz/Mindel. So far, the provenance and age of the deposits has not been precisely defined, even though the development of each fan is believed to be related to the successive glacial periods in the Tatra Mountains. Heavy minerals were studied to determine the source of the deposits. Heavy mineral analyses revealed that zircon, tourmaline, rutile, garnet, amphibole, epidote, and apatite are the typical constituents of the heavy mineral fraction. Abundances of heavy minerals differ in each of the Pleistocene fans of the Czarny Dunajec River, especially the amphibole content. However, the chemical composition of garnet, amphibole, and tourmaline is rather uniform. This research showed that mainly medium-grade metamorphic rocks with a subordinate share of high-grade metamorphics, and granitic rocks are the dominant source rocks of the deposits studied. Such rocks are exposed in the Western Tatra Mountains, which most probably supplied the Orava Basin with clastic material. Change in abundances of heavy minerals in the succession may reflect the progressive erosion of the source area. Grain-size distribution and textural features of the sampled sediments suggest fluvial and aeolian modes of transportation. Additionally, this study indicated that heavy minerals may be used to correlate the loess covers in the Orava Basin.


2013 ◽  
Vol 85 (4) ◽  
pp. 1289-1301 ◽  
Author(s):  
ESTEFAN M. DA FONSECA ◽  
JOSE A. BAPTISTA NETO ◽  
JOHN MCALISTER ◽  
BERNARD SMITH ◽  
MARCOS A. FERNANDEZ ◽  
...  

One of the main results of the processes related to urbanization is the contamination of the adjacent water bodies. Inserted in this context, the Rodrigo de Freitas lagoon is situated in the south zone of the city of Rio de Janeiro. This ecosystem receives several inputs containing all sorts of pollutants, including heavy metals. The present work aimed to study the partitioning of heavy metals in the sediments of Rodrigo de Freitas and the influence of organic matter in this fractionation dynamic. The results of these analyses presented the contents of organic matter as an important metal-capturing agent. Fractionation of organic matter resulted in a predominance of humine. Heavy metal partitioning showed that the metals bound by the water-soluble phase have no significant concentrations. Special features such as, reducing sediment, high levels of organic matter and fine grain size have transformed this ecosystem in an effective deposit of pollutants, where heavy metals are not available in easily reactive fractions.


Author(s):  
A. V. Maslov ◽  
V. N. Podkovyrov ◽  
E. Z. Gareev ◽  
A. D. Nozhkin

The bulk chemical composition of synrift sandstones and associated clayey rocks has been analized, and the distribution of the fields they form has been studied on discriminant paleogeodynamic SiO2K2O/Na2O [Roser, Korsch, 1986] and DF1DF2 [Verma, Armstrong-Altrin, 2013] diagrams. The studied sandstones in terms of bulk chemical composition mainly correspond to greywacke, lititic, arkose and subarkose psammites; Sublitites and quartz arenites are also found. A significant part in the analyzed data massif consists of psammites, in which log(Na2O/K2O)-1.0; missing on the Pettijohn classification chart. This confirms our conclusion, based on the results of mineralogical and petrographic studies, that the sedimentary infill of rift structures unites immature sandstones, the detrital framework of which was formed due to erosion of local sources, represented by various magmatic and sedimentary formations. Synrift clayey rocks, compared with sandstones, are composed of more mature fine-grained siliciclastics. As follows from the distribution of figurative data points of clayey rocks on the F1F2 diagram [Roser, Korsch, 1988], its sources were mainly sedimentary deposits. The content of most of the main rock-forming oxides in the synrift sandstones is almost the same as in silt-sandstone rocks present in the Upper Precambrian-Phanerozoic sedimentary mega-complex of the East European Plate, but at the same time differs significantly from the Proterozoic and Phanerozoic cratonic sediments, as well as from the average composition upper continental crust. It is shown that the distribution of the fields of syntift sandstones and clayey rocks on the SiO2K2O/Na2O diagram does not have any distinct features, and their figurative data points are localized in the areas of terrigenous rocks of passive and active continental margins. On the DF1DF2 diagram, the fields of the studied psammites and clayey rocks are located in areas of riftogenous and collisional environments. We have proposed a different position of the border between these areas in the diagram, which will require further verification.


2021 ◽  
Author(s):  
Elena Popova

<p>Such factors as climate, currents, morphology, riverine input, and the source rocks influence the composition of the sediments in the Arctic Ocean. Heavy minerals being quite inert in terms of transport can reflect the geology of the source rock clearly and indicate the riverine input. There is a long history of studying the heavy mineral composition of the sediments in the Arctic Ocean. The works by Vogt (1997), Kosheleva (1999), Stein (2008), and others study the distribution of the minerals both on a sea scale and oceanwide. The current study covers Russian shelf seas: Barents, Kara, Laptev, East Siberian, and Chukchi Seas. To collect the material several data sources were used: data collected by the institute VNIIOkeangeologia during numerous expeditions since 2000 for mapping the shelf, data from the old expedition reports (earlier than 2000) taken from the geological funds, and datasets from PANGAEA (www.pangaea.de). About 82 minerals and groups of minerals were included in the joint dataset. The density of the sample points varied significantly in all seas: 1394 data points in the Barents Sea, 713 in the Kara Sea, 487 in the Laptev Sea, 196 in the East Siberian Sea, and 245 in the Chukchi Sea. These data allowed comparing the areas in terms of major minerals and associations. Maps of prevailing and significant components were created in ODV (Schlitzer, 2020) to demonstrate the differences between the seas and indicate the sites of remarkable changes in the source rocks. Additionally, the standardized ratio was calculated to perform quantitative comparison: the sea average was divided by the weighted sea average and then the ratio of that number to the mineral average was found. Only the minerals present in at least four seas and amounting to at least 20 points per sea were considered. As a result, water areas with the highest content of particular minerals were detected. The ratio varied from 0 to 3,4. Combining the ratio data for various minerals allowed mapping specific groups or provinces for every sea and within the seas.</p><p> </p><p>Kosheleva, V.A., & Yashin, D.S. (1999). Bottom Sediments of the Arctic Seas. St. Petersburg: VNIIOkeangeologia, 286pp. (in Russian).</p><p>PANGAEA. Data Publisher for Earth & Environmental Science https://www.pangaea.de/</p><p>Schlitzer, R. (2020). Ocean Data View, Retrieved from https://odv.awi.de.</p><p>Stein, R. (2008). Arctic Ocean Sediments: Processes, Proxies, and Paleoenvironment. Oxford: Elsevier, 602pp.</p><p>Vogt, C. (1997). Regional and temporal variations of mineral assemblages in Arctic Ocean sediments as a climatic indicator during glacial/interglacial changes. Berichte Zur Polarforschung, 251, 309pp.</p>


2016 ◽  
Vol 283 (1844) ◽  
pp. 20162337 ◽  
Author(s):  
Steffen Kiel

Deep-sea hydrothermal vents and methane seeps are inhabited by members of the same higher taxa but share few species, thus scientists have long sought habitats or regions of intermediate character that would facilitate connectivity among these habitats. Here, a network analysis of 79 vent, seep, and whale-fall communities with 121 genus-level taxa identified sedimented vents as a main intermediate link between the two types of ecosystems. Sedimented vents share hot, metal-rich fluids with mid-ocean ridge-type vents and soft sediment with seeps. Such sites are common along the active continental margins of the Pacific Ocean, facilitating connectivity among vent/seep faunas in this region. By contrast, sedimented vents are rare in the Atlantic Ocean, offering an explanation for the greater distinction between its vent and seep faunas compared with those of the Pacific Ocean. The distribution of subduction zones and associated back-arc basins, where sedimented vents are common, likely plays a major role in the evolutionary and biogeographic connectivity of vent and seep faunas. The hypothesis that decaying whale carcasses are dispersal stepping stones linking these environments is not supported.


Sign in / Sign up

Export Citation Format

Share Document