scholarly journals Synthesis and Characterization of Silver Nanoparticles Using Prodigiosin Pigment and Evaluation of Their Antibacterial and Anti-Inflammatory Activities

2021 ◽  
pp. 1103-1120
Author(s):  
Oulan Alaa ◽  
Nadham Hassan

This study focused on the biological synthesis of silver nanoparticles (AgNPs), using prodigiosin pigment produced by Serratia marcescens. The effect of parameters such as pH, temperature, time, with various concentrations of silver nitrate (AgNO3) and prodigiosin on the synthesis of AgNPs were also studied.  Optimized results of the biosynthesis process revealed an increase in the intensity of Surface Plasmon Resonance (SPR) bands of nanoparticles with shifting at the wavelength of 400 nm. In addition, optimum synthesis of AgNPs was achieved at pH 12, temperature 55℃, and reaction time 24 h, with concentrations of prodigiosin, as a reducing agent, of 12.5 µg/ml and silver ion concentration of 1 mM. Measurement of the size of silver nanoparticles by SEM diffraction revealed a value of 30 nm. Finally, the minimum inhibitory concentration of AgNPs against pathogenic bacteria was 32 µg/ml for Staphylococcus aureus and Pseudomonas aeruginosa. The results of anti-inflammatory effects of Ag NPs obviously demonstrated that the infections of test animals treated with AgNPs were completely healed after 4 days of treatment, while the animals treated with fucidin (as control) did not exhibit any healing.

2020 ◽  
Vol 51 (Special) ◽  
Author(s):  
Atwan & Hayder

The present study was aimed to biosynthesis of silver nanoparticles by using rhaminolipid produced from local isolate Pseudomonas aeruginosa as reducing and stabilizing agent. Silver nanoparticles (AgNPs) synthesized by green method have shown several applications such as biomedical, anticancer, bio sensing, catalysis etc. Characterization study of purified bioemulsifier using thin layer chromatography (TLC) was demonstrated that the biosurfactant contains mono, and di- rhamnolipid with Rf values of 0.86 and 0.36 respectively. Optimization results of biosynthesis silver nanoparticles were revealed that an increasing in intensity of Surface Plasmon Resonance (SPR) bands of nanoparticles with shifting at wavelength (400 nm). Also optimum synthesis of AgNPs was at pH 5, Temperature 40℃, reaction time 5 minutes with concentration of rhaminolipid as reducing agents (2×10-3w/v) and Silver ion concentration (6×10-3 mol/L).  The result of X-ray diffraction was indicated that the size of silver nanoparticles observed was 38 nm and show relatively stable peak at -23.2 mV. Finally, the minimum inhibitory concentration of Ag NPs against human pathogenic bacteria obtained at concentration (1mg/ml) for both gram negative and gram-positive bacteria. The results of anti-inflammatory effects of Ag NPs obviously, cleared that the infection of test animals treated with AgNPs were completely healed after 6 days of treatment, while the animals treated with fucidin (as control) not exhibited any healing in the infection.


2012 ◽  
Vol 621 ◽  
pp. 83-86
Author(s):  
Ting Ting He ◽  
Ya Zhou Zhou ◽  
Juan Yang ◽  
Hai Feng Shi

The antimicrobial effects of silver nanoparticles (Ag-NPs) are well known, but Ag-NPs are known to aggregate in medium of high salt content and lose their antibacterial activity. Graphene-based silver nanoparticles (Ag NPs-GE) materials can form stable dispersion in the aqueous solution. This study explores the antimicrobial effects of Ag NPs-GE in pathogenic bacteria, Pseudomonas aeruginosa. The antimicrobial activity of Ag NPs-GE was investigated in Luria-Bertani (LB) medium on solid agar plates and liquid system supplement with various concentrations of Ag NPs-GE. The Ag NPs-GE were shown to be an effective bactericide.


2021 ◽  
Vol 10 (1) ◽  
pp. 412-420
Author(s):  
Mona S. Alwhibi ◽  
Dina A. Soliman ◽  
Manal A. Awad ◽  
Asma B. Alangery ◽  
Horiah Al Dehaish ◽  
...  

Abstract In recent times, research on the synthesis of noble metal nanoparticles (NPs) has developed rapidly and attracted considerable attention. The use of plant extracts is the preferred mode for the biological synthesis of NPs due to the presence of biologically active constituents. Aloe vera is a plant endowed with therapeutic benefits especially in skincare due to its unique curative properties. The present study focused on an environmental friendly and rapid method of phytosynthesis of silver nanoparticles (Ag-NPs) using A. vera gel extract as a reductant. The synthesized Ag-NPs were characterized by transmission electron microscopy (TEM), UV-Vis spectroscopy, Fourier transform infrared (FTIR), and dynamic light scattering (DLS). TEM micrographs showed spherical-shaped synthesized Ag-NPs with a diameter of 50–100 nm. The UV-Vis spectrum displayed a broad absorption peak of surface plasmon resonance (SPR) at 450 nm. The mean size and size distribution of the formed Ag-NPs were investigated using the DLS technique. Antibacterial studies revealed zones of inhibition by Ag-NPs of A. vera (9 and 7 mm) against Pseudomonas aeruginosa and Escherichia coli, respectively. Furthermore, the antifungal activity was screened, based on the diameter of the growth inhibition zone using the synthesized Ag-NPs for different fungal strains. Anticancer activity of the synthesized Ag-NPs against the mouse melanoma F10B16 cell line revealed 100% inhibition with Ag-NPs at a concentration of 100 µg mL−1. The phytosynthesized Ag-NPs demonstrated a marked antimicrobial activity and also exhibited a potent cytotoxic effect against mouse melanoma F10B16 cells. The key findings of this study indicate that synthesized Ag-NPs exhibit profound therapeutic activity and could be potentially ideal alternatives in medicinal applications.


2019 ◽  
Vol 8 (1) ◽  
pp. 629-634 ◽  
Author(s):  
Amir Rahimirad ◽  
Afshin Javadi ◽  
Hamid Mirzaei ◽  
Navideh Anarjan ◽  
Hoda Jafarizadeh-Malmiri

Abstract Silver nanoparticles (Ag NPs) were synthesized using four pathogenic bacterial extracts namely, Bacillus cereus, E. coli, Staphylococcus aureus and Salmonella entericasubsp.enterica. Synthesis process were hydrothermally accelerated using temperature, pressure and heating time of 121°C, 1.5 bar ad 15 min. Physico- chemical characteristics of the fabricated Ag NPs, including, particle size, polydispersity index (PDI), zeta potential, broad emission peak (λmax) and concentration were evaluated using UV-Vis spectrophotometer and dynamic light scattering (DLS) particle size analyzer. Furthermore, main existed functional groups in the provided bacterial extracts were recognized using Fourier transform infrared spectroscopy. The obtained results revealed that two main peaks were detected around 3453 and 1636.5 cm-1, for all bacterial extracts, were interrelated to the stretching vibrations of hydroxyl and amide groups which those had key roles in the reduction of ions and stabilizing of the formed Ag NPs. The results also indicated that, Ag NPs with much desirable characteristics, including minimum particle size (25.62 nm) and PDI (0.381), and maximum zeta potential (-29.5 mV) were synthesized using S. e. subsp. enterica extract. λmax, absorbance and concentration values for the fabricated Ag NPs with this bacterial extract were 400 nm, 0.202% a.u. and 5.87 ppm.


2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Pavan Kumar Dara ◽  
R. Mahadevan ◽  
P. A. Digita ◽  
S. Visnuvinayagam ◽  
Lekshmi R. G. Kumar ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (12) ◽  
pp. 9923-9931 ◽  
Author(s):  
B. Domènech ◽  
V. Romero ◽  
M. I. Vázquez ◽  
M. Avila ◽  
J. Benavente ◽  
...  

Study of the effect of Ag-NPs stripes in Nafion: evaluation of chemical, electrochemical and mechanical properties.


2012 ◽  
Vol 622-623 ◽  
pp. 893-896
Author(s):  
H.R. Ebrahimi ◽  
M. Eslami

The bioceramics, calcium hydroxyapatite (HA), is a material which is biocompatible to the human body and is well suited to be used in hyperthermia applications for the treatment of bone cancer. We synthesis hydroxyapatite in modified synthetic body fluid (SBF) solutions at 37°C and pH of 7.4 using a novel chemical precipitation technique. Then after heat operation, on filtered precipitated result HA were produced. For loading the silver nanoparticles (Ag NPs) on the hydroxyapatite we use AgNO3 solution. And for reducing Ag+ ions apply sodium borohydrate solution. The formations of the silver nanoparticles on the HAP structure were confirmed by X-ray diffraction, transmission electron microscopy (TEM). TEM image show the nanostructure of silver particles, being formed on hydroxyapatite texture.


Sign in / Sign up

Export Citation Format

Share Document