scholarly journals Increasing the Accuracy of Orbital Elements for a Satellite in a Low Earth Orbit under the Influence of Atmospheric Drag Using Adams-Bashforth Method

2021 ◽  
pp. 81-90
Author(s):  
Rasha H. Ibrahim ◽  
Abdul-Rahman H. Saleh

The perturbed equation of motion can be solved by using many numerical methods. Most of these solutions were inaccurate; the fourth order Adams-Bashforth method is a good numerical integration method, which was used in this research to study the variation of orbital elements under atmospheric drag influence.  A satellite in a Low Earth Orbit (LEO), with altitude form perigee = 200 km, was selected during 1300 revolutions (84.23 days) and ASat / MSat value of 5.1 m2/ 900 kg. The equations of converting state vectors into orbital elements were applied. Also, various orbital elements were evaluated and analyzed. The results showed that, for the semi-major axis, eccentricity and inclination have a secular falling discrepancy, Longitude of Ascending Node is periodic, Argument of Perigee has a secular increasing variation, while true anomaly grows linearly from 0 to 360°. Furthermore, all orbital elements, excluding Longitude of Ascending Node, Argument of Perigee, and true anomaly, were more affected by drag than other orbital elements, through their falling as the time passes. The results illustrate a high correlation as compared with literature reviews in this field.

2020 ◽  
Vol 24 (1) ◽  
pp. 56-60
Author(s):  
Mohamed R. Amin

AbstractThe focus of this paper is the design of a self-maintenance orbit using two natural forces against each other. The effect of perturbations due to Earth's oblateness up to the third order on both the semi-major axis and eccentricity for a low Earth orbit satellite together with the perturbation due to air drag on the same orbital parameters were used, in order to create self-maintenance orbits. Numerical results were simulated for a low earth orbit satellite, which substantiates the applicability of the results.


1985 ◽  
Vol 83 ◽  
pp. 179-180
Author(s):  
Cl. Froeschlé

We investigated the orbital evolution of Quadrantid-like meteor streams situated in the vicinity of the 2/1 resonance with Jupiter. For the starting orbital elements we took the values of the orbital elements of the Quadrantid meteor stream except for the semi-major axis which was varied between a = 3.22 and a = 3.34 AU. We considered these meteor streams as a ring and we investigated the resonant effect on the dispersion of this ring over a period of 13 000 years. Only gravitational forces due to the Sun and due to Jupiter were taken into account.


2016 ◽  
Vol 4 (20) ◽  
pp. 6
Author(s):  
Jakub Hospodka ◽  
Zdeněk Houfek

Space flights are in these days not any more question of technology, but more question of costs. One way how to decrease cost of launch is change of home spaceport. Change of home spaceport for different rockets is a way to achieve more efficient launches to space. The reason is different acceleration achieved from Earth rotation. We added several mathematical calculations of missions to Low Earth Orbit and Geostationary Earth Orbit to show bonuses from Earth rotation and effect of atmospheric drag on specific rockets used these days. We discussed only already used space vessels. Namely Arianne 5, Delta 4 heavy, Proton-M, Zenit and Falcon9. For reaching GEO we discuss possibility of using Hohmman transfer, because none of aforementioned vessels is available for direct GEO entry. As possible place for launch we discussed spaceports Baikonur, Kennedy Space center, Guyana Space center and Sea Launch platform. We present results in form of additional acceleration for each spaceport, and we also project this additional acceleration in means payload increase. In conclusion we find important differences between vessel effectivity based on spaceport used for launch. Change of launch location may bring significant cost decrease for operators.


1996 ◽  
Vol 172 ◽  
pp. 45-48
Author(s):  
E.V. Pitjeva

The extremely precise Viking (1972–1982) and Mariner data (1971–1972) were processed simultaneously with the radar-ranging observations of Mars made in Goldstone, Haystack and Arecibo in 1971–1973 for the improvement of the orbital elements of Mars and Earth and parameters of Mars rotation. Reduction of measurements included relativistic corrections, effects of propagation of electromagnetic signals in the Earth troposphere and in the solar corona, corrections for topography of the Mars surface. The precision of the least squares estimates is rather high, for example formal standard deviations of semi-major axis of Mars and Earth and the Astronomical Unit were 1–2 m.


2020 ◽  
pp. 453-461
Author(s):  
Ahmed K. Izzet ◽  
Mayada J. Hamwdi ◽  
Abed T. Jasim

     The main objective of this paper is to calculate the perturbations of tide effect on LEO's satellites . In order to achieve this goal, the changes in the orbital elements which include the semi major axis (a) eccentricity (e) inclination , right ascension of ascending nodes ( ), and fifth element argument of perigee ( ) must be employed. In the absence of perturbations, these element remain constant. The results show that the effect of tidal perturbation on the orbital elements depends on the inclination of the satellite orbit. The variation in the ratio  decreases with increasing the inclination of satellite, while it increases with increasing the time.


2021 ◽  
Vol 39 (3) ◽  
pp. 397-412
Author(s):  
Victor U. J. Nwankwo ◽  
William Denig ◽  
Sandip K. Chakrabarti ◽  
Muyiwa P. Ajakaiye ◽  
Johnson Fatokun ◽  
...  

Abstract. In this work, we simulated the atmospheric drag effect on two model SmallSats (small satellites) in low Earth orbit (LEO) with different ballistic coefficients during 1-month intervals of solar–geomagnetic quiet and perturbed conditions. The goal of this effort was to quantify how solar–geomagnetic activity influences atmospheric drag and perturbs satellite orbits, with particular emphasis on the Bastille Day event. Atmospheric drag compromises satellite operations due to increased ephemeris errors, attitude positional uncertainties and premature satellite re-entry. During a 1-month interval of generally quiescent solar–geomagnetic activity (July 2006), the decay in altitude (h) was a modest 0.53 km (0.66 km) for the satellite with the smaller (larger) ballistic coefficient of 2.2×10-3 m2 kg−1 (3.03×10-3 m2 kg−1). The associated orbital decay rates (ODRs) during this quiet interval ranged from 13 to 23 m per day (from 16 to 29 m per day). For the disturbed interval of July 2000 the significantly increased altitude loss and range of ODRs were 2.77 km (3.09 km) and 65 to 120 m per day (78 to 142 m per day), respectively. Within the two periods, more detailed analyses over 12 d intervals of extremely quiet and disturbed conditions revealed respective orbital decays of 0.16 km (0.20 km) and 1.14 km (1.27 km) for the satellite with the smaller (larger) ballistic coefficient. In essence, the model results show that there was a 6- to 7-fold increase in the deleterious impacts of satellite drag between the quiet and disturbed periods. We also estimated the enhanced atmospheric drag effect on the satellites' parameters caused by the July 2000 Bastille Day event (in contrast to the interval of geomagnetically quiet conditions). The additional percentage increase, due to the Bastille Day event, to the monthly mean values of h and ODR are 34.69 % and 50.13 % for Sat-A and 36.45 % and 68.95 % for Sat-B. These simulations confirmed (i) the dependence of atmospheric drag force on a satellite's ballistic coefficient, and (ii) that increased solar–geomagnetic activity substantially raises the degrading effect of satellite drag. In addition, the results indicate that the impact of short-duration geomagnetic transients (such as the Bastille Day storm) can have a further deleterious effect on normal satellite operations. Thus, this work increases the visibility and contributes to the scientific knowledge surrounding the Bastille Day event and also motivates the introduction of new indices used to describe and estimate the atmospheric drag effect when comparing regimes of varying solar–geomagnetic activity. We suggest that a model of satellite drag, when combined with a high-fidelity atmospheric specification as was done here, can lead to improved satellite ephemeris estimates.


Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  
Sean Bruinsma ◽  
Mariangel Fedrizzi ◽  
Jia Yue ◽  
Christian Siemes ◽  
Stijn Lemmens

As the number of satellites in low Earth orbit grows by leaps and bounds, accurate calculations of the effects of atmospheric drag on their trajectories are becoming critically important.


2007 ◽  
Vol 3 (S249) ◽  
pp. 331-346
Author(s):  
Frédéric S. Masset

AbstractTides come from the fact that different parts of a system do not fall in exactly the same way in a non-uniform gravity field. In the case of a protoplanetary disk perturbed by an orbiting, prograde protoplanet, the protoplanet tides raise a wake in the disk which causes the orbital elements of the planet to change over time. The most spectacular result of this process is a change in the protoplanet's semi-major axis, which can decrease by orders of magnitude on timescales shorter than the disk lifetime. This drift in the semi-major axis is called planetary migration. In a first part, we describe how the planet and disk exchange angular momentum and energy at the Lindblad and corotation resonances. Next we review the various types of planetary migration that have so far been contemplated: type I migration, which corresponds to low-mass planets (less than a few Earth masses) triggering a linear disk response; type II migration, which corresponds to massive planets (typically at least one Jupiter mass) that open up a gap in the disk; “runaway” or type III migration, which corresponds to sub-giant planets that orbit in massive disks; and stochastic or diffusive migration, which is the migration mode of low- or intermediate-mass planets embedded in turbulent disks. Lastly, we present some recent results in the field of planetary migration.


2021 ◽  
Vol 19 (9) ◽  
pp. 24-37
Author(s):  
Najlaa Ozaar Hasan ◽  
Wafaa Hasan Ali Zaki ◽  
Ahmed Kader Izzet

Researching and modeling perturbations is essential in astrodynamics because it gives information on the deviations from the satellite's normal, idealized, or unperturbed motion. Examined the impact of non-conservative atmospheric drag and orbital elements of low-earth-orbit satellites under low solar activity. The study is consisting of parts, the first looks at the effects of atmospheric drag on LEO satellites different area to mass ratios, and the second looks at different inclination values. Modeling the impacts of perturbation is included in each section, and the final portion determines the effects of atmospheric drag at various node values. The simulation was run using the Celestial Mechanics software system's SATORB module (Beutler, 2005), which solves the perturbation equations via numerical integration. The findings were examined using Matlab 2012. Conclusion that the impacts are stronger for retrograde orbits, which is due to the fact that the satellite moves in the opposite direction. The atmospheric drag effects for all orbital elements were increased by increasing the area to mass ratio. When the node value rises, the size parameter changes slightly, but the other orbital elements change. At varying inclinations, it is found that the changes in orbital elements due to atmospheric drug.


Sign in / Sign up

Export Citation Format

Share Document