Tissue Engineering of Autologous Cartilage Transplants for Rhinology

1998 ◽  
Vol 12 (1) ◽  
pp. 59-64 ◽  
Author(s):  
A. Naumann ◽  
N. Rotter ◽  
J. Bujía ◽  
J. Aigner

In reconstructive surgery there is increasing demand for cartilage transplants to fill defects, especially nose and/or outer ear defects. Tissue engineering is one of the most modern pathways to generate autologous cartilage transplants. Isolated chondrocytes obtained from a tiny patient's biopsy were seeded on bioresorbable preshaped cell carriers to provide a 3-dimensional cell arrangement as in vivo. The combined use of these cell carriers in form of a non-woven mesh and a constant medium perfusion was performed to generate a cartilage-like cell-polymer-construct, which was finally subcutanously implanted in nude mice for full maturation. After explantation of 6 months, expression of cartilage specific extracellular matrix molecules was obvious by using histochemical and immunohistochemical methods. These data show that tissue engineering with isolated multiplied human chondrocytes from a tiny biopsy seeded on bioresorbable polymer is a promising system to generate autologous cartilage transplants for replacements in reconstructive surgery.

2003 ◽  
Vol 26 (3) ◽  
pp. 225-234 ◽  
Author(s):  
T. Walles ◽  
C. Puschmann ◽  
A. Haverich ◽  
H. Mertsching

Objective Degradation mechanisms of cardiovascular bioprostheses may play an important role in bioartificial implants. The fate of acellular implanted and cellular cardiovascular scaffolds was examined in an in vivo model. Methods Decellularized or native ovine carotid artery (CA, n=42) and aorta (AO, n=42) were implanted subcutaneously into rats for 2, 4 and 8 weeks. Immunohistochemical methods were used to monitor repopulation. Desmin-vimentin, CD31-, CD4- and CD18-antibodies for myocytes, endothelium, and inflammatory cell-infiltration, respectively. Calcification was detected by von-Kossa staining. Cell density was quantified by DNA-isolation. Results Acellular AO and CA matrices showed progressive calcification. Cellular AO and CA matrices trigger a strong inflammatory reaction which subsides after two weeks. CA scaffolds are revascularized progressively, whereas AO biocomposites degenerate. Calcification is less pronounced in cellular AO scaffolds and lacking in CA. Conclusions Acellular bioartificial implants demonstrate degradation mechanisms similar to currently applied cardiovascular bioprostheses. Cellularized viable implants are promising clinical alternatives.


2004 ◽  
Vol 199 (3) ◽  
pp. 26
Author(s):  
Ravi K. Birla ◽  
Gregory H. Borschel ◽  
Robert G. Dennis ◽  
David L. Brown

2008 ◽  
Vol 21 (4) ◽  
pp. 807-816 ◽  
Author(s):  
D. Skodacek ◽  
S. Brandau ◽  
T. Deutschle ◽  
S. Lang ◽  
N. Rotter

Several surgical disciplines apply cartilage grafts for reconstructive purposes and have to overcome the scarcity of donor sites for this unique tissue. Employing the techniques of tissue engineering, cartilage might be generated in reasonable amounts for clinical purposes. Application of growth factors together with biochemical and biomechanical scaffold properties influence the process of ex vivo transplant production. The aims of this study are: 1) to investigate the influence of IGF-1 and TGFβ-2 on tissue engineered human septal cartilage in vitro and in vivo after transplantation in nude mice; 2) to analyse the effect of the polydioxanone (PDS) content of the biodegradable Ethisorb E210™ scaffold on the properties of the implanted constructs. Cells were three-dimensionally cultured on biodegradable Ethisorb E210™ (PGA-PLA-copolymer fleeces with polydioxanone (PDS) adhesions), or on E210™ scaffolds with a reduced polydioxanone content. Wet weight (ww), GAG-, and hydroxyprolin-content, as well as the cellularity of the neocartilage constructs were quantitatively evaluated. Additionally, the in vivo resorption of the two types of cell carriers was monitored. Addition of growth factors clearly increased the wet weight of the in vitro cultured constructs before transplantation. After transplantation, high PDS content improved the in vivo stability and macroscopic morphometric appearance of the tissue engineered specimens and led to enhanced deposition of glycosaminoglycans in transplanted constructs. Hydroxyproline content of the implants was not affected by either growth factors or PDS content. These data suggest a role for IGF-1 and TGFß-2 in preparative in vitro culture of chondrocytes before implantation, while PDS content of the scaffold is important for in vivo properties of the implanted material.


2001 ◽  
Vol 7 (S2) ◽  
pp. 32-33
Author(s):  
D. Sudar ◽  
D. Callahan ◽  
B. Parvin ◽  
D. Knowles ◽  
C. Ortiz de Solorzano ◽  
...  

The challenge of the post-genomic era is functional genomics, i.e. understanding how the genome is expressed to produce myriad cell phenotypes. A phenotype is the result of selective expression of the genome in response to the microenvironment. to use genomic information to understand the biology of complex organisms, the biological responses and signaling pathways in cells need to be studied in context, i.e. within the proper tissue structure. Nonetheless, most current biology is conducted using cells cultured in monolayers on traditional tissue culture plastic. These non-physiological models impede the ability to predict in vivo responses from model systems. The same cells cultured in 2-dimensions (i.e. monolayers) vs. 3-dimensions (e.g. multicellular tumor spheroids) differ in their responses to external stimuli such as ionizing radiation, viral infection, cytotoxic drugs, and chemotherapeutic agents. Our laboratory has led the way in promoting and developing 3-dimensional cell culture models that more accurately reflect in vivo biology, beginning with the establishment 15 years ago of physiologically functional reconstituted mammary acini in culture.Quantitation of spatial and temporal concurrent behavior of multiple markers in these 3-dimensional cell cultures is hampered by the currently routine mode of sequential image acquisition, measurement and analysis of specific targets. This precludes the detailed analysis of multi-dimensional, time sequence responses and fails to relate features in novel and meaningful ways that will further our understanding of basic biology. Thus new methodology was needed for high-throughput, dynamic evaluations of large numbers of live multicellular specimens. Rather than using confocal microscopy methods, which interfere with live cell systems due to photo-damage, optical sectioning of the 3-dimensional structures is achieved with structured light illumination using the Wilson grating in an implementation described by Lanni.


2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
Sebastian E. Dunda ◽  
T. Schriever ◽  
C. Rosen ◽  
C. Opländer ◽  
R. H. Tolba ◽  
...  

The creation of musculoskeletal tissue represents an alternative for the replacement of soft tissue in reconstructive surgery. However, most of the approaches of creating artificial tissue have their limitations in the size as the maximally obtainable dimension of bioartificial tissue (BAT) is limited due to the lack of supporting vessels within the 3-dimensional construct. The seeded myoblasts require high amounts of perfusion, oxygen, and nutrients to survive. To achieve this, we developed a 3-dimensional scaffold which features the epigastric artery as macroscopic core vessel inside the BAT in a rat model (perfused group, ) and a control group () without the epigastric vessels and, therefore, without perfusion. The in vivo monitoring of the transplanted myoblasts was assessed by bioluminescence imaging and showed both the viability of the epigastric artery within the 3-dimensional construct and again that cell survival in vivo is highly depending on the blood supply with the beginning of capillarization within the BAT seven days after transplantation in the perfused group. However, further studies focussing on the matrix improvement will be necessary to create a transplantable BAT with the epigastric artery as anastomosable vessel.


2020 ◽  
Vol 48 (3) ◽  
pp. 755-764
Author(s):  
Benjamin B. Rothrauff ◽  
Rocky S. Tuan

Bone possesses an intrinsic regenerative capacity, which can be compromised by aging, disease, trauma, and iatrogenesis (e.g. tumor resection, pharmacological). At present, autografts and allografts are the principal biological treatments available to replace large bone segments, but both entail several limitations that reduce wider use and consistent success. The use of decellularized extracellular matrices (ECM), often derived from xenogeneic sources, has been shown to favorably influence the immune response to injury and promote site-appropriate tissue regeneration. Decellularized bone ECM (dbECM), utilized in several forms — whole organ, particles, hydrogels — has shown promise in both in vitro and in vivo animal studies to promote osteogenic differentiation of stem/progenitor cells and enhance bone regeneration. However, dbECM has yet to be investigated in clinical studies, which are needed to determine the relative efficacy of this emerging biomaterial as compared with established treatments. This mini-review highlights the recent exploration of dbECM as a biomaterial for skeletal tissue engineering and considers modifications on its future use to more consistently promote bone regeneration.


2004 ◽  
Vol 83 (02) ◽  
Author(s):  
A Haisch ◽  
A Evers ◽  
K Jöhrens-Leder ◽  
S Jovanovic ◽  
B Sedlmaier ◽  
...  
Keyword(s):  

Author(s):  
Lilla Krokker ◽  
Borbála Szabó ◽  
Kinga Németh ◽  
Balázs Sarkadi ◽  
Katalin Mészáros ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 42-OR
Author(s):  
VICTORIA SALEM ◽  
LUIS F. DELGADILLO SILVA ◽  
KINGA SUBA ◽  
ALDARA MARTIN ALONSO ◽  
WHEI-CHANG KIM ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document