scholarly journals A New Approach of In Vivo Musculoskeletal Tissue Engineering Using the Epigastric Artery as Central Core Vessel of a 3-Dimensional Construct

2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
Sebastian E. Dunda ◽  
T. Schriever ◽  
C. Rosen ◽  
C. Opländer ◽  
R. H. Tolba ◽  
...  

The creation of musculoskeletal tissue represents an alternative for the replacement of soft tissue in reconstructive surgery. However, most of the approaches of creating artificial tissue have their limitations in the size as the maximally obtainable dimension of bioartificial tissue (BAT) is limited due to the lack of supporting vessels within the 3-dimensional construct. The seeded myoblasts require high amounts of perfusion, oxygen, and nutrients to survive. To achieve this, we developed a 3-dimensional scaffold which features the epigastric artery as macroscopic core vessel inside the BAT in a rat model (perfused group, ) and a control group () without the epigastric vessels and, therefore, without perfusion. The in vivo monitoring of the transplanted myoblasts was assessed by bioluminescence imaging and showed both the viability of the epigastric artery within the 3-dimensional construct and again that cell survival in vivo is highly depending on the blood supply with the beginning of capillarization within the BAT seven days after transplantation in the perfused group. However, further studies focussing on the matrix improvement will be necessary to create a transplantable BAT with the epigastric artery as anastomosable vessel.

2019 ◽  
Vol 13 (1) ◽  
Author(s):  
Azizeh Rahmani Del Bakhshayesh ◽  
Nahideh Asadi ◽  
Alireza Alihemmati ◽  
Hamid Tayefi Nasrabadi ◽  
Azadeh Montaseri ◽  
...  

Abstract Tissue engineering, as an interdisciplinary approach, is seeking to create tissues with optimal performance for clinical applications. Various factors, including cells, biomaterials, cell or tissue culture conditions and signaling molecules such as growth factors, play a vital role in the engineering of tissues. In vivo microenvironment of cells imposes complex and specific stimuli on the cells, and has a direct effect on cellular behavior, including proliferation, differentiation and extracellular matrix (ECM) assembly. Therefore, to create appropriate tissues, the conditions of the natural environment around the cells should be well imitated. Therefore, researchers are trying to develop biomimetic scaffolds that can produce appropriate cellular responses. To achieve this, we need to know enough about biomimetic materials. Scaffolds made of biomaterials in musculoskeletal tissue engineering should also be multifunctional in order to be able to function better in mechanical properties, cell signaling and cell adhesion. Multiple combinations of different biomaterials are used to improve above-mentioned properties of various biomaterials and to better imitate the natural features of musculoskeletal tissue in the culture medium. These improvements ultimately lead to the creation of replacement structures in the musculoskeletal system, which are closer to natural tissues in terms of appearance and function. The present review article is focused on biocompatible and biomimetic materials, which are used in musculoskeletal tissue engineering, in particular, cartilage tissue engineering.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2730 ◽  
Author(s):  
Samuel Ebele Udeabor ◽  
Carlos Herrera-Vizcaíno ◽  
Robert Sader ◽  
C. James Kirkpatrick ◽  
Sarah Al-Maawi ◽  
...  

The permeability and inflammatory tissue reaction to Mucomaix® matrix (MM), a non- cross-linked collagen-based matrix was evaluated in both ex vivo and in vivo settings. Liquid platelet rich fibrin (PRF), a blood concentrate system, was used to assess its capacity to absorb human proteins and interact with blood cells ex vivo. In the in vivo aspect, 12 Wister rats had MM implanted subcutaneously, whereas another 12 rats (control) were sham-operated without biomaterial implantation. On days 3, 15 and 30, explantation was completed (four rats per time-point) to evaluate the tissue reactions to the matrix. Data collected were statistically analyzed using analysis of variance (ANOVA) and Tukey multiple comparisons tests (GraphPad Prism 8). The matrix absorbed the liquid PRF in the ex vivo study. Day 3 post-implantation revealed mild tissue inflammatory reaction with presence of mononuclear cells in the implantation site and on the biomaterial surface (mostly CD68-positive macrophages). The control group at this stage had more mononuclear cells than the test group. From day 15, multinucleated giant cells (MNGCs) were seen in the implantation site and the outer third of the matrix with marked increase on day 30 and spread to the matrix core. The presence of these CD68-positive MNGCs was associated with significant matrix vascularization. The matrix degraded significantly over the study period, but its core was still visible as of day 30 post-implantation. The high permeability and fast degradation properties of MM were highlighted.


2006 ◽  
Vol 18 (01) ◽  
pp. 8-12
Author(s):  
MING-CHIN LU ◽  
YUNG-HISEN CHANG ◽  
LEIH-CHIH CHIANG ◽  
HAI-TING WANG ◽  
CHUN-YUAN CHENG ◽  
...  

The present study provides in vivo trials of silicone rubber chambers filled with different concentrations of bilobalide (0, 50, 100, 200, 400 μM) and Schwann cells (1.5 × 105 cell/ml) in a 1:1 volumetric addition to bridge a 15 mm sciatic nerve defect in rats. At the conclusion of 8 weeks, histological technique was used to evaluate the functional recovery of the nerve. In the groups receiving the Schwann cells and bilobalide at 50, 100, 200 and 400 μM, 44% (4 of 9, one died during experiment), 50% (5 of 10), 30% (3 of 10), and 60% (6 of 10) of the animals exhibiting a regenerated nerve cable across the 15-mm gap, respectively. In comparison, 50% (5 of 10) of the animals in the group with Schwann cells only showed such regenerated nerve cables. Although the adding of bilobalide did not promote the nerve growth-promoting capability of Schwann cells in the nerve guides, the techniques we used in this study provided a new approach combining Chinese medicine and tissue engineering to nerve regeneration.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Hongyu Qiao ◽  
Ran Zhang ◽  
Lina Gao ◽  
Yanjie Guo ◽  
Jinda Wang ◽  
...  

Introduction. Bone marrow-derived mesenchymal stromal cells (BMSCs) have emerged as promising cell candidates but with poor survival after transplantation. This study was designed to investigate the efficacy of VEGF, bFGF, and IGF-1 on BMSCs’ viability and proliferation bothin vivoandin vitrousing bioluminescence imaging (BLI).Methods. BMSCs were isolated fromβ-actin-Fluc+transgenic FVB mice, which constitutively express firefly luciferase. Apoptosis was induced by hypoxia preconditioning for up to 24 h followed by flow cytometry and TUNEL assay. 106BMSCs with/without growth factors were injected subcutaneously into wild type FVB mice’s backs. Survival of BMSCs was longitudinally monitored using bioluminescence imaging (BLI) for 5 weeks. Protein expression of Akt, p-Akt, PARP, and caspase-3 was detected by Western blot.Results. Hypoxia-induced apoptosis was significantly attenuated by bFGF and IGF-1 compared with VEGF and control groupin vitro(P<0.05). When combined with matrigel, IGF-1 showed the most beneficial effects in protecting BMSCs from apoptosisin vivo.The phosphorylation of Akt had a higher ratio in the cells from IGF-1 group.Conclusion. IGF-1 could protect BMSCs from hypoxia-induced apoptosis through activation of p-Akt/Akt pathway.


2015 ◽  
Author(s):  
◽  
Sarah Elizabeth Smith

A composite acellular tissue graft comprised of decellularized tendon conjugated with nanomaterials has been developed for musculoskeletal tissue engineering applications. The focus of this dissertation is on the development of composite grafts derived from decellularized human tendon conjugated with gold nanoparticles and hydroxyapatite nanoparticles for use in anterior cruciate ligament (ACL) reconstruction. Gold nanoparticles are used to promote remodeling, cellularity, and biological incorporation of grafts. Hydroxyapatite nanoparticles are used to promote osseointegration, cellularity, and to enhance the graft/bone interface. These composite grafts along with several other variations, were characterized in vitro using a variety of cell-based assays including cell viability, cell proliferation, and cell migration assays. Two in vivo studies were conducted. A green fluorescent protein (GFP) porcine model was investigated as a new method to evaluate host tissue integration into soft tissue grafts as well as the in vivo biocompatibility of subcutaneously implanted composite grafts. Results demonstrate biocompatibility and remodeling of composite grafts and the value of using the GFP model as a qualitative method for assessing host tissue integration. A rabbit ACL reconstruction model was used to investigate graft remodeling in addition to the overall viability of using composite grafts to serve as a functional ACL replacement. Results demonstrate successful replacement of ACLs using composite grafts with enhanced remodeling from the addition of nanoparticles. Overall, studies demonstrate the success and potential further application of using composite grafts for musculoskeletal tissue engineering applications. Future studies will include expanding development of variations of these composite materials to address additional clinical needs.


2021 ◽  
Vol 11 (40) ◽  
pp. 211-212
Author(s):  
Fernando Fortunato Jeronimo ◽  
Jenifer Pendiuk Gonçalves ◽  
Katia Fialho Do Nascimento ◽  
Simone Martins De Oliveira ◽  
Carolina Camargo De Oliveira ◽  
...  

Introduction: Skin is an attractive target to study extracellular matrix, due to abundance in Connective tissue. In cases of injuries the first step is an inflammatory reaction and subsequent the healing that involves several changes in the matrix. These changes are fundamental to inflammatory cells activities allowing healing. Highly diluted products were shown to facilitate inflammatory mediators and to activate immune cells in vivo and in vitro, thus it can be effective to wound healing. Aims: This study aims to evaluate highly diluted products effects on inflammation and cicatrization process. Methodology: Three compounds (M8 (Aconitum napellus 20dH, Arsenicum album 18dH, Asa foetida 20dH, Calcarea carbonica 16dH, Conium maculatum 17dH, Ipecacuanha 13dH, Phosphorus 20dH, Rhus toxicodendron 17dH, Silicea 20dH, Sulphur 24dH, Thuja occidentalis 19dH), M1 (Chelidonium majus 20dH, Cinnamon 20dH, Echinaceae purpurea 20dH, Gelsemium sempervirens 20dH plus all M8 compounds) and Curcuma cH30 – simple product), were manipulated as a gel and applied on mice dorsal flank after incision and suture (approximately 1 cm and three points), for 3 consecutive days. After the treatments the scars were evaluated macroscopically, the animals were killed, the skin samples collected, fixed and processed for Hematoxilin-Eosin (HE) and Masson Tricromic (to observe the collagen fibers type I). The slices were analyzed and images collected by a light microscope Olympus BX51 with camera attached Olympus DP72. Results: It was observed a higher and faster rate of tissue epithelization in the treated groups after three days of gel-product application. This could be observed in lower rates in the control group (no treatment) - Figure 1 and 2). Regeneration and organization of connective tissue were proportional to epithelization the treated groups. We also observed evidences of changes in amount of neutrophils and fibroblasts, resulting in changes in the healing period. Analyses for these confirmations are in progress.


2017 ◽  
Vol 37 (6) ◽  
Author(s):  
Bin Xu ◽  
Rui Wang ◽  
Hao Wang ◽  
Hong-Gang Xu

The present study aims to assess coculture of allogenic decalcified bone matrix (DBM) and bone marrow mesenchymal stem cells (BMSCs) in the knee joint cavity of rabbits for cartilage tissue engineering. Rabbits were assigned to an in vitro group, an in vivo group, and a blank control group. At the 4th, 8th, and 12th week, samples from all groups were collected for hematoxylin–eosin (HE) staining and streptavidin–peroxidase (SP) method. The morphological analysis software was used to calculate the average absorbance value (A value). SP and flow cytometry demonstrated that BMSCs were induced into chondrocytes. DBM scaffold showed honeycomb-shaped porous and three-dimensional structure, while the surface pores are interlinked with the deep pores. At the 4th week, in the blank control group, DBM scaffold structure was clear, and cells analogous to chondrocytes were scattered in the interior of DBM scaffolds. At the 8th week, in the in vivo group, there were a large amount of cells, mainly mature chondrocytes, and the DBM scaffolds were partially absorbed. At the 12th week, in the in vitro group, the interior of scaffolds was filled up with chondrocytes with partial fibrosis, but arranged in disorder. In the in vivo group, the chondrocytes completely infiltrated into the interior of scaffolds and were arranged in certain stress direction. The in vivo group showed higher A value than the in vitro and blank control groups at each time point. Allogenic DBM combined BMSCs in the knee joint cavity of rabbits could provide better tissue-engineered cartilage than that cultivated in vitro.


2020 ◽  
Vol 9 (1) ◽  
pp. 971-989
Author(s):  
Shuxiang Cai ◽  
Chuanxiang Wu ◽  
Wenguang Yang ◽  
Wenfeng Liang ◽  
Haibo Yu ◽  
...  

AbstractCell adhesion is a basic requirement for anchorage-dependent cells to survive on the matrix. It is the first step in a series of cell activities, such as cell diffusion, migration, proliferation, and differentiation. In vivo, cells are surrounded by extracellular matrix (ECM), whose physical and biochemical properties and micromorphology may affect and regulate the function and behavior of cells, causing cell reactions. Cell adhesion is also the basis of communication between cells and the external environment and plays an important role in tissue development. Therefore, the significance of studying cell adhesion in vitro has become increasingly prominent. For instance, in the field of tissue engineering and regenerative medicine, researchers have used artificial surfaces of different materials to simulate the properties of natural ECM, aiming to regulate the behavior of cell adhesion. Understanding the factors that affect cell behavior and how to control cell behavior, including cell adhesion, orientation, migration, and differentiation on artificial surfaces, is essential for materials and life sciences, such as advanced biomedical engineering and tissue engineering. This article reviews various factors affecting cell adhesion as well as the methods and materials often used in investigating cell adhesion.


Sign in / Sign up

Export Citation Format

Share Document