scholarly journals Formulation Development and in vitro Evaluation of Eletriptan Fast Dissolving Oral Films

Author(s):  
Shrushti V. Somwanshi ◽  
Sanjay S. Thonte

The present study aimed at preparing fast dissolving oral films of Eletriptan as a model drug which is used for the migraine treatment. Fast dissolving dosage forms have acquired great importance in pharmaceutical industry because of their unique properties. In the present research work various trials were carried out using different grades of HPMC E3, E6, and E15, maltodextrin DE6 and other polymers by solvent casting method. The prepared films were evaluated for film thickness, folding endurance, surface pH, morphological properties, % drug content and content uniformity, tensile strength, percent elongation, in vitro disintegration time and in vitro dissolution studies. The optimized formulation F24 prepared using HPMC E15 showed minimum disintegration time (10 sec), highest dissolution rate i.e. 99% of drug within 8 min and satisfactory physicochemical properties. The optimized film was evaluated for its bioavailability compared with pure drug as reference standard. Statistical analysis revealed that no significant difference between the bioavailability parameters of the film and the reference standard indicated that they exhibited comparable plasma level-time profiles. These findings suggest that the fast dissolving film containing Eletriptan is considered to be potentially useful for the treatment of migraine where quick onset of action is desirable.

Author(s):  
Bhikshapathi D. V. R. N. ◽  
Srinivas A

The main objective of this study was to develop fast dissolving oral films of ropinirole HCl to attain quick onset of action for the better management of Parkinson’s disease. Twenty-seven formulations (F1-F27) of ropinirole oral dissolving films by solvent-casting method using 33 response surface method by using HPMC E15, Maltodextrin PEG 4000 by using Design of experiment software. Formulations were evaluated for their physical characteristics, thickness, folding endurance, tensile strength, disintegration time, drug content uniformity and drug release characteristics and found to be within the limits. Among the prepared formulations F4 showed minimum disintegration time 11 sec, maximum drug was released i.e. 99.68 ± 1.52% of drug within 10 min when compared to the other formulations and finalized as optimized formulation. FTIR data revealed that no interactions takes place between the drug and polymers used in the optimized formulation. The in vitro dissolution profiles of marketed product and optimized formulation was compared and found to be the drug released was 92.77 ± 1.52 after 50 min. Therefore, it can be a good alternative to conventional ropinirole for immediate action. In vitro evaluation of the ropinirole fast dissolving films confirmed their potential as an innovative dosage form to improve delivery and quick onset of action of ropinirole. The oral dissolving film is considered to be potentially useful for the treatment of Parkinson’s disease where quick onset of action is desired


Author(s):  
S. Jyothi Sri ◽  
D.V. R.N Bhikshapathi

The present investigation was aimed with the objective of developing fast dissolving oral films of Aripiprazole to attain quick onset of action for the better management of Schizophrenia. Fourteen formulations (F1-F14) of Aripiprazole mouth dissolving films by solvent-casting method using HPMC E5, HPMC E15, Maltodextrin, PG and PVA. Formulations were evaluated for their physical characteristics, thickness, folding endurance, tensile strength, disintegration time, drug content uniformity and drug release characteristics and found to be within the limits. Among the prepared formulations F13 showed minimum disintegration time 10 sec, maximum drug was released i.e. 99.49 ± 0.36% of drug within 8 min when compared to the other formulations and finalized as optimized formulation. FTIR data revealed that no interactions take place between the drug and polymers used in the optimized formulation. The in vitro dissolution profiles of marketed product and optimized formulation was compared and found to be the drug released was 20.73 ± 0.25 after 8 min. Therefore, it can be a good alternative to conventional Aripiprazole for immediate action. In vitro evaluation of the Aripiprazole fast dissolving oral films confirmed their potential as an innovative dosage form to improve delivery and quick onset of action of Aripiprazole. The mouth dissolving film is potentially useful for the treatment of Schizophrenia where the quick onset of action is desired.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Km. Roshani ◽  
Mangla Nand Singh ◽  
D. Sasmal ◽  
P. D. Panda ◽  
Jai Narayan Mishra ◽  
...  

Etoricoxib belongs to a class of drugs called non-steroidal anti-inflammatory drugs (NSAIDs). Etoricoxib acts by reducing the pain and swelling (inflammation) in the joints and muscles of people older than 16 years of age and older patients with osteoarthritis, rheumatoid arthritis, ankylosing spondylitis and gout. The present study was aimed to formulate fast dissolving oral films to enhance bioavailability, avoid presystemic metabolism and fast onset of action. The Preformulation studies such as Micromeritics, melting point, partition coefficients, UV spectroscopy, thin layer chromatography, loss on drying were carried out. The fast dissolving oral film was successfully fabricated by solvent casting method. Oral film was fabricated using PVA and PVP polymer. The prepared films were evaluated for Organoleptic evaluations, film weight, thickness, folding endurance, tensile strength, drug content uniformity of films, surface pH, disintegration time and in-vitro dissolution studies and SEM study. The formulation F8 has shown disintegration time of 22±1 seconds and is more promising, showed drug release in phosphate buffer 6.8 pH 86.33% in 10 min. Hence formulation F8 was selected as best formulation. In the stability testing all films stored at elevated temperature showed slight change in pH, other parameters were found to be unchanged.


2019 ◽  
Vol 22 (2) ◽  
pp. 228-234 ◽  
Author(s):  
Sreebash Chandra Bhowmik ◽  
Marzia Alam ◽  
Md Saiful Islam Pathan

The purpose of the current study was to develop a fast dissolving polymeric oral thin film containing palonosetron hydrochloride having good mechanical properties, fast disintegration, dissolution and good drug content uniformity. Solvent casting method was used to prepare the films. Compatibility between drugs and excipients were studied using FTIR and HPLC. Nine different formulations of film from F1 to F9 were prepared using different concentration of polymer A at drug-polymer A ratio (1:26), (1:28), (1:30), (1:32), (1:34), (1:36), (1:38), (1:40), (1:42) and at polymer A-plasticizer B of (65:10), (70:10), (75:10), (40:10), (42.5:10), (45:10), (47.5:10), (50:10), (52.5:10), respectively. The in vitro dissolution study was carried out in phosphate buffer (pH 6.8) at 37±0.5oC and 50 rpm using USP XXIV paddle method. Physicochemical evaluations of all the batches were performed including weight variation, thickness, folding endurance, pH, in vitro disintegration and drug release, FTIR and content uniformity test. Maximum and minimum drug dissolution were found in F6 (108.7%) and in F1 (98.5%), respectively. The maximum and minimum disintegration time were in F9 (43.8 sec) and F1 (25 sec), respectively which demonstrated that disintegration of the film was directly proportional to the polymer A and plasticizer B concentration. It is quite evident from the present research work that the film prepared using polymer A-plasticizer B were smooth, mechanically strong and easy to peel out. Among all the batches, formulation F5 showed best results with respect to disintegration (33 sec), drug dissolution (105%), content uniformity (98.51%) and folding endurance (731). Therefore, it can be said that combination of polymer A and plasticizer B can be prospectively used for the preparation of palonosetron hydrochloride oral thin film. Bangladesh Pharmaceutical Journal 22(2): 228-234, 2019


Author(s):  
R. SANTOSH KUMAR ◽  
ANNU KUMARI ◽  
B. KUSUMA LATHA ◽  
PRUDHVI RAJ

Objective: The aim of the current research is optimization, preparation and evaluation of starch tartrate (novel super disintegrant) and preparation of fast dissolving oral films of cetirizine dihydrochloride by employing starch tartrate. Methods: To check the drug excipient compatibility studies of the selected drug (Cetrizine dihydrochloride) and the prepared excipient i. e starch tartrate, different studies like FTIR (Fourier-transform infrared spectroscopy), DSC (Differential scanning calorimetry) and thin-layer chromatography (TLC) were carried out to find out whether there is any interaction between cetirizine dihydrochloride and starch tartrate. The solvent casting method was used for the preparation of fast dissolving films. The prepared films were then evaluated for thickness, folding endurance, content uniformity, tensile strength, percent elongation, in vitro disintegration time and in-vitro dissolution studies. Response surface plots and contour plots were also plotted to know the individual and combined effect of starch tartrate (A), croscarmellose sodium (B) and crospovidone (C) on disintegration time and drug dissolution efficiency in 10 min (dependent variables). Results: Films of all the formulations are of good quality, smooth and elegant by appearance. Drug content (100±5%), thickness (0.059 mm to 0.061 mm), the weight of films varies from 51.33 to 58.06 mg, folding endurance (52 to 67 times), tensile strength (10.25 to 12.08 N/mm2). Fast dissolving films were found to disintegrate between 34 to 69 sec. Percent dissolved in 5 min were found to be more in F1 formulation which confirms that starch tartrate was effective at 1%. Conclusion: From the research conducted, it was proved that starch tartrate can be used in the formulation of fast dissolving films of cetirizine dihydrochloride. The disintegration time of the films was increased with increase in concentration of super disintegrant.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Rajni Bala ◽  
Sushil Khanna ◽  
Pravin Pawar

Clobazam orally dissolving strips were prepared by solvent casting method. A full 32 factorial design was applied for optimization using different concentration of film forming polymer and disintegrating agent as independent variable and disintegration time, % cumulative drug release, and tensile strength as dependent variable. In addition the prepared films were also evaluated for surface pH, folding endurance, and content uniformity. The optimized film formulation showing the maximum in vitro drug release, satisfactory in vitro disintegration time, and tensile strength was selected for bioavailability study and compared with a reference marketed product (frisium5 tablets) in rabbits. Formulation (F6) was selected by the Design-expert software which exhibited DT (24 sec), TS (2.85 N/cm2), and in vitro drug release (96.6%). Statistical evaluation revealed no significant difference between the bioavailability parameters of the test film (F6) and the reference product. The mean ratio values (test/reference) of Cmax (95.87%), tmax (71.42%), AUC0−t (98.125%), and AUC0−∞ (99.213%) indicated that the two formulae exhibited comparable plasma level-time profiles.


Author(s):  
Hemant A. Deokule ◽  
Smita S. Pimple ◽  
Praveen D. Chaudhari ◽  
Ajit S. Kulkarni

Fast dissolving strips are used as novel approaches, as it dissolves rapidly in mouth and directly reaches the systemic circulation. In present research work, an attempt has been made to prepare mouth dissolving strips of Metoclopramide hydrochloride by using a novel film former Pullulan by solvent casting method. A33 full factorial design was utilized for the optimization of the effect of independent variables such as the amount of Pullulan, amount of PEF 400, amount of SSG on mechanical properties, and % drug release of strips. The drug compatibility studies using FTIR and DSC studies formulated strips were characterized for their physicochemical parameter like weight variation, visual appearance, folding endurance, thickness, disintegration time, drug content, and in vitro dissolution studies. FTIR and DSC studies revealed that the polymer is compatible with the drug. It was found that the optimum levels of the responses for a fast release strip could be obtained at low levels of Pullulan, PEG400, and SSG. The prepared strip was clear transparent and had a smooth surface. The surface pH was found 4.8 to 5.2 be in the range of to which is close to salivary pH, which indicates that strips may have less potential to irritate the oral mucosa, thereby they are comfortable. The drug release was found to be between 90.94 to 100.5% in 2 min. The in-vitro disintegration time of strips prepared with Pullulan was in the range of 19 to 57 sec. As the concentration of SSG increases the decrease in the disintegration time of strips a decrease. The dissolution rate increased with an increase in the concentration of SSG. Hence, it can be inferred that the fast dissolving oral strips of Metoclopramide hydrochloride may produce rapid action thereby improving bioavailability and enhance the absorption by avoiding the first-pass effect.


2019 ◽  
Vol 9 (1-s) ◽  
pp. 229-239
Author(s):  
J Nandhini ◽  
AN Rajalakshmi

The objective of this study was to enhance the solubility of Methylprednisolone by choosing micronized form of drug and to enhance patient compliance by formulating it as dispersible tablets using quality by design (QbD) approach. Dispersible tablets of Methylprednisolone were developed by 23 factorial design. In this study independent variables were concentrations of MCC 102, CCS and Magnesium stearate and dependent variables were disintegration time, hardness and dissolution. The resulting data was fitted into Design Expert Software (Trial Version) and analyzed statistically using analysis of variance (ANOVA). The response surface plots were generated to determine the influence of concentration of MCC 102, CCS and magnesium stearate on responses. The tablets were prepared by direct compression method by choosing micronized form of drug and formulations were evaluated for the standard of dispersible tablets. Results showed that no significant drug-polymer interactions in FTIR studies. According to QbD suggestion the formulation O1 (Desirability- 0.73) with MCC-38mg, CCS-3.5mg and magnesium stearate-2.5mg was formulated and evaluated. The disintegration time was found to be 69 seconds, hardness was found to be 64N and in vitro dissolution with in 30minutes. Optimized O1 formulation was within the limits of standards of dispersible tablets with increased water solubility and better patient compliance. Stability study on optimized O1 formulation showed that there is no significant changes during study period. Thus, O1 formulation was found to be stable. The study indicates that formulation of Methylprednisolone dispersible tablets by using QbD approach is a promising formulation development method. Keywords: Dispersible tablets, Methylprednisolone, Direct compression, Quality by Design and ANOVA.


2020 ◽  
Vol 10 (3-s) ◽  
pp. 107-110
Author(s):  
Aashish Marskole ◽  
Sailesh Kumar Ghatuary ◽  
Abhishek Parwari ◽  
Geeta Parkhe

Oral fast dissolving midodrine hydrochloride films prepared by solvent casting method, PEG 400 was the selected plasticizers, incorporating superdisintegrants such as croscarmellose sodium (CCS) and sodium starch glycolate (SSG) to achieve the goal. Drug content, weight variability, film thickness, disintegration time, endurance, percentage of moisture content, and in vitro dissolution tests were analyzed for the prepared films. In all formulations, the tensile strength value was found from 0.965±0.045 and 1.256±0.032 and the folding capacity was over 100. The assay values ranged from 97.98±0.25 to 99.89±0.36 percent for all formulations. The disintegration time was ranging between 55±9 to 120±6 sec, the minimum time for disintegration was found in formulation F5 (55±9). The prepared F5 formulation shows greater release of the drug (99.25±0.41 percent) within 15 min relative to other formulations. As the drug having low solubility, fast disintegration may leads to more drug availability for dissolution, resulting in faster absorption in systemic circulation increased systemic availability of drug leads to quick onset of action which is prerequisite for hypertension. Keywords: Midodrine hydrochloride, Fast dissolving films, Solvent casting method, Superdisintegrants.


Author(s):  
Rosy Fatema ◽  
Sumaiya Khan ◽  
A. S. M. Roknuzzaman ◽  
Ramisa Anjum ◽  
Nishat Jahan

Loratadine, a second generation H1-receptor antagonist, works by blocking the action of histamine and is widely prescribed for itching, runny nose, watery eyes, and sneezing from "hay fever" and other allergic conditions. To ensure quality the main requirements for a medicinal product are safety, potency, efficacy and stability. This research work aimed to compare and assess the quality levels of different local brands of loratadine tablets available in the drug market of Bangladesh. Six different brands of loratadine 10 mg tablet manufactured by the local companies were used for the analysis. The evaluation was performed through the determination of weight variation, hardness, friability, percent potency, disintegration time, and dissolution profile in accordance with USP-NF specifications. All brands showed acceptable weight variation and % friability. The percent potency for tested samples by UV method ranges from 97.02%-108%, showing none of the brands contains less than 90% of the active principle as per the specification. The result of the physical and chemical studies, such as in-vitro dissolution, disintegration, hardness, etc., has been found to differ but lie within the specified limit. After analyzing the data obtained from the tests, it can be claimed that loratadine 10 mg tablets manufactured and marketed by several local companies in Bangladesh meet the quality standard required to achieve the desired therapeutic outcomes.


Sign in / Sign up

Export Citation Format

Share Document