scholarly journals Preparation and Evaluation of Palonosetron Hydrochloride Oral Thin Film

2019 ◽  
Vol 22 (2) ◽  
pp. 228-234 ◽  
Author(s):  
Sreebash Chandra Bhowmik ◽  
Marzia Alam ◽  
Md Saiful Islam Pathan

The purpose of the current study was to develop a fast dissolving polymeric oral thin film containing palonosetron hydrochloride having good mechanical properties, fast disintegration, dissolution and good drug content uniformity. Solvent casting method was used to prepare the films. Compatibility between drugs and excipients were studied using FTIR and HPLC. Nine different formulations of film from F1 to F9 were prepared using different concentration of polymer A at drug-polymer A ratio (1:26), (1:28), (1:30), (1:32), (1:34), (1:36), (1:38), (1:40), (1:42) and at polymer A-plasticizer B of (65:10), (70:10), (75:10), (40:10), (42.5:10), (45:10), (47.5:10), (50:10), (52.5:10), respectively. The in vitro dissolution study was carried out in phosphate buffer (pH 6.8) at 37±0.5oC and 50 rpm using USP XXIV paddle method. Physicochemical evaluations of all the batches were performed including weight variation, thickness, folding endurance, pH, in vitro disintegration and drug release, FTIR and content uniformity test. Maximum and minimum drug dissolution were found in F6 (108.7%) and in F1 (98.5%), respectively. The maximum and minimum disintegration time were in F9 (43.8 sec) and F1 (25 sec), respectively which demonstrated that disintegration of the film was directly proportional to the polymer A and plasticizer B concentration. It is quite evident from the present research work that the film prepared using polymer A-plasticizer B were smooth, mechanically strong and easy to peel out. Among all the batches, formulation F5 showed best results with respect to disintegration (33 sec), drug dissolution (105%), content uniformity (98.51%) and folding endurance (731). Therefore, it can be said that combination of polymer A and plasticizer B can be prospectively used for the preparation of palonosetron hydrochloride oral thin film. Bangladesh Pharmaceutical Journal 22(2): 228-234, 2019

Author(s):  
R. SANTOSH KUMAR ◽  
ANNU KUMARI ◽  
B. KUSUMA LATHA ◽  
PRUDHVI RAJ

Objective: The aim of the current research is optimization, preparation and evaluation of starch tartrate (novel super disintegrant) and preparation of fast dissolving oral films of cetirizine dihydrochloride by employing starch tartrate. Methods: To check the drug excipient compatibility studies of the selected drug (Cetrizine dihydrochloride) and the prepared excipient i. e starch tartrate, different studies like FTIR (Fourier-transform infrared spectroscopy), DSC (Differential scanning calorimetry) and thin-layer chromatography (TLC) were carried out to find out whether there is any interaction between cetirizine dihydrochloride and starch tartrate. The solvent casting method was used for the preparation of fast dissolving films. The prepared films were then evaluated for thickness, folding endurance, content uniformity, tensile strength, percent elongation, in vitro disintegration time and in-vitro dissolution studies. Response surface plots and contour plots were also plotted to know the individual and combined effect of starch tartrate (A), croscarmellose sodium (B) and crospovidone (C) on disintegration time and drug dissolution efficiency in 10 min (dependent variables). Results: Films of all the formulations are of good quality, smooth and elegant by appearance. Drug content (100±5%), thickness (0.059 mm to 0.061 mm), the weight of films varies from 51.33 to 58.06 mg, folding endurance (52 to 67 times), tensile strength (10.25 to 12.08 N/mm2). Fast dissolving films were found to disintegrate between 34 to 69 sec. Percent dissolved in 5 min were found to be more in F1 formulation which confirms that starch tartrate was effective at 1%. Conclusion: From the research conducted, it was proved that starch tartrate can be used in the formulation of fast dissolving films of cetirizine dihydrochloride. The disintegration time of the films was increased with increase in concentration of super disintegrant.


Author(s):  
Hemant A. Deokule ◽  
Smita S. Pimple ◽  
Praveen D. Chaudhari ◽  
Ajit S. Kulkarni

Fast dissolving strips are used as novel approaches, as it dissolves rapidly in mouth and directly reaches the systemic circulation. In present research work, an attempt has been made to prepare mouth dissolving strips of Metoclopramide hydrochloride by using a novel film former Pullulan by solvent casting method. A33 full factorial design was utilized for the optimization of the effect of independent variables such as the amount of Pullulan, amount of PEF 400, amount of SSG on mechanical properties, and % drug release of strips. The drug compatibility studies using FTIR and DSC studies formulated strips were characterized for their physicochemical parameter like weight variation, visual appearance, folding endurance, thickness, disintegration time, drug content, and in vitro dissolution studies. FTIR and DSC studies revealed that the polymer is compatible with the drug. It was found that the optimum levels of the responses for a fast release strip could be obtained at low levels of Pullulan, PEG400, and SSG. The prepared strip was clear transparent and had a smooth surface. The surface pH was found 4.8 to 5.2 be in the range of to which is close to salivary pH, which indicates that strips may have less potential to irritate the oral mucosa, thereby they are comfortable. The drug release was found to be between 90.94 to 100.5% in 2 min. The in-vitro disintegration time of strips prepared with Pullulan was in the range of 19 to 57 sec. As the concentration of SSG increases the decrease in the disintegration time of strips a decrease. The dissolution rate increased with an increase in the concentration of SSG. Hence, it can be inferred that the fast dissolving oral strips of Metoclopramide hydrochloride may produce rapid action thereby improving bioavailability and enhance the absorption by avoiding the first-pass effect.


Author(s):  
S. Jyothi Sri ◽  
D.V. R.N Bhikshapathi

The present investigation was aimed with the objective of developing fast dissolving oral films of Aripiprazole to attain quick onset of action for the better management of Schizophrenia. Fourteen formulations (F1-F14) of Aripiprazole mouth dissolving films by solvent-casting method using HPMC E5, HPMC E15, Maltodextrin, PG and PVA. Formulations were evaluated for their physical characteristics, thickness, folding endurance, tensile strength, disintegration time, drug content uniformity and drug release characteristics and found to be within the limits. Among the prepared formulations F13 showed minimum disintegration time 10 sec, maximum drug was released i.e. 99.49 ± 0.36% of drug within 8 min when compared to the other formulations and finalized as optimized formulation. FTIR data revealed that no interactions take place between the drug and polymers used in the optimized formulation. The in vitro dissolution profiles of marketed product and optimized formulation was compared and found to be the drug released was 20.73 ± 0.25 after 8 min. Therefore, it can be a good alternative to conventional Aripiprazole for immediate action. In vitro evaluation of the Aripiprazole fast dissolving oral films confirmed their potential as an innovative dosage form to improve delivery and quick onset of action of Aripiprazole. The mouth dissolving film is potentially useful for the treatment of Schizophrenia where the quick onset of action is desired.


2019 ◽  
Vol 9 (4-s) ◽  
pp. 462-468
Author(s):  
Mohd. Razi Ansari ◽  
Sumer Singh ◽  
M.A. Quazi ◽  
Yaasir Ahmed Ansari ◽  
Jameel Abbas

Among the different type of route of administration oral route for drug administration is most common route in which Orodispersible tablet is preferred for the patient which are unconscious, week or for immediate control. The tablet gets dispersed in mouth cavity without water, present study deals with formulation of Naproxen sodium mouth dissolving tablets using super disintegrants. Naproxen sodium is analgesic and NSAID, used for the treatment of pain and inflammation caused by different condition such as osteoarthritis, rheumatoid arthritis and menstrual cramps. However gastric discomfort caused by naproxen sodium result in poor patient compliance associated with it conventional doses form but now days Naproxen sodium MDTs produces rapid onset of action and minimise gastric discomfort associated with it. Thus improves patient compliance, enhance bioavailability and reduces the dose of drug. MDTs are formulated by direct compression method using super disintegrants in different proportion. The powder blend is subjected to pre-compression evaluation parameters like bulk density, true density, and tapped density and angle of repose. Formulations are evaluated for weight variation, hardness, wetting time, water absorption time, disintegration time. And in vitro dissolution studies and all formulations complies Pharmacopoeias standards. The tablets are evaluated and result compared for all five formulation the most efficacious super disintegrants for MTDs of Naproxen sodium as suggested by the dispersion time, disintegration time and drug dissolution profiles. Keywords: - MDT, Naproxen Sodium, crosscarmellose Sodium, Sodium starch glycolate, Cross-povidone.


Author(s):  
Rosy Fatema ◽  
Sumaiya Khan ◽  
A. S. M. Roknuzzaman ◽  
Ramisa Anjum ◽  
Nishat Jahan

Loratadine, a second generation H1-receptor antagonist, works by blocking the action of histamine and is widely prescribed for itching, runny nose, watery eyes, and sneezing from "hay fever" and other allergic conditions. To ensure quality the main requirements for a medicinal product are safety, potency, efficacy and stability. This research work aimed to compare and assess the quality levels of different local brands of loratadine tablets available in the drug market of Bangladesh. Six different brands of loratadine 10 mg tablet manufactured by the local companies were used for the analysis. The evaluation was performed through the determination of weight variation, hardness, friability, percent potency, disintegration time, and dissolution profile in accordance with USP-NF specifications. All brands showed acceptable weight variation and % friability. The percent potency for tested samples by UV method ranges from 97.02%-108%, showing none of the brands contains less than 90% of the active principle as per the specification. The result of the physical and chemical studies, such as in-vitro dissolution, disintegration, hardness, etc., has been found to differ but lie within the specified limit. After analyzing the data obtained from the tests, it can be claimed that loratadine 10 mg tablets manufactured and marketed by several local companies in Bangladesh meet the quality standard required to achieve the desired therapeutic outcomes.


2018 ◽  
Vol 6 (3) ◽  
pp. 5-16 ◽  
Author(s):  
ABRAHAM LINKU ◽  
JOSEPH SIJIMOL

The aim of present work was the development of fast dissolving oral film of Loratadine to overcome the limitations of current routes of administration, to provide immediate action and increase the patient compliance. To improve the bioavailability of the drug, fast dissolving oral film were formulated using different grades of Hydroxy Propyl Methyl Cellulose(HPMC) and various plasticizers like Polyethylene Glycol(PEG) 400, glycerol, Propylene glycol(PG) by solvent casting method. The formulated films were evaluated for film thickness, surface pH, folding endurance, weight variation, % moisture loss, exvivo permeation study, tensile strength, % elongation, drug content uniformity, in vitro dissolution studies,in vitro disintegration test and in vivo study. The optimized formulation (F9) containing HPMC E5 and glycerol showed minimum disintegration time (10.5 s), highest in vitrodissolution (92.5%) and satisfactory stability. Ex vivo permeation study of optimized formulation showed a drug release of 80.6% within 10 min. The milk induced leucocytosis inrat proved that fast dissolving oral films of Loratadine produced a faster onset of action compared to the conventional tablets. These findings suggest that fast dissolving oral film of Loratadine could be potentially useful for treatment of allergy where quick onset of action is required.


2013 ◽  
Vol 16 (1) ◽  
pp. 1-9
Author(s):  
Shahriar Ahmed ◽  
Mehrina Nazmi ◽  
Ikramul Hasan ◽  
Sabiha Sultana ◽  
Shimul Haldar ◽  
...  

Fexofenadine HCl immediate release tablets were designed to increase the dissolution rate by using superdisintegrants. Different formulations of Fexofenadine HCl were prepared by direct compression method. These formulations were evaluated for hardness, thickness, friability, weight variation, disintegration time, and in vitro dissolution study. The drug release from the formulations were studied according to USP specification (USP paddle method at 50 rpm for 60 minutes) maintaining the temperature to 37°C. Sodium starch glycolate, cross carmellose sodium, crospovidone (kollidon CL), ludiflash and xanthan gum were used in 3%, 6% and 8% concentrations as superdisintegrants. Thus, the ratio of superdisintegrants was changed whereas all the other excipients as well as the active drug (Fexofenadine HCl) remained same in every formulation. Here, 0.001N HCl was used as dissolution medium according to USP and absorbances were determined by using UV spectrophotometer at 217 nm. The F-3 and F-6 formulation prepared by 8% of Sodium starch glycolate and 8% of Cross carmellose sodium showed 99.99% drug release within 30 minutes and 45 minutes, respectively. The disintegration times of F-3 and F-6 formulation were within 9 seconds. The interactions between drug and excipients were characterized by FTIR spectroscopic study. DOI: http://dx.doi.org/10.3329/bpj.v16i1.14483 Bangladesh Pharmaceutical Journal 16(1): 1-9, 2013


Author(s):  
Vedanshu Malviya ◽  
Srikant Pande

The intention of the present study was to formulate the oral dispersible film of Fluoxetine hydrochloride using pullulan as a polymer and to evaluate it with the different parameters. The drug-excipients studies were carried out in order to determine any type of incompatibilities by using Fourier transmission infrared spectroscopy (FT-IR). The oral dispersible films were prepared using solvent casting method using pullulan as a polymer. Glycerin was used as a plasticizer. The prepared films were evaluated for the parameters like physical appearance, thickness, folding endurance, In-vitro disintegration, mechanical properties, surface pH, drug content uniformity, taste evaluation, In-vitro dissolution test and stability study. The X5 formulation was found to be stable and appropriate in its evaluation parameters than compared to other formulations. The folding endurance was found to be 259±2.53, disintegration time was found to be 04±0.69, thickness was found to be 0.081±0.003, tensile strength was found to be 5.55, the % elongation was found to be 27.50, the maximum percentage drug release was found to be 95.80% in 30 minutes. The drug content was found to be 99.86 with surface pH of 6.8. In the stability studies of the formulation the product was found to be stable for 90 days. The oral dispersible film is simple to administer and very much effective for the patients and the prepared film of fluoxetine hydrochloride proves to be potential candidate for safe and effective oral dispersible drug delivery.


2019 ◽  
Vol 9 (6) ◽  
pp. 110-115
Author(s):  
Rajat Pawar ◽  
Ravi Sharma ◽  
Gajanan Darwhekar

This research work was aimed to enhance the oral bioavailability and provide faster onset of action of Prochlorperazine maleate (used for the treatment nausea and vomiting) by formulating its mouth dissolving film (MDF). Prochlorperazine belongs to BCS II and oral bioavailability of it’s about 11-15%. The MDF of Prochlorperazine  maleate was prepared by solvent casting  method using HPMC (film forming agent),Glycerol (plasticizer), Betacyclodextrin (solubilizing agent), Citric acid (saliva stimulating agent), Mannitol (sweetening agent). The formulation was optimized by two factors, three levels (32) was used for the formulation optimization of fast dissolving film of Prochlorperazine maleate and experimental trials are performed on all 9 formulation. In which the amount of HPMC, Glycerol were selected as independent variables (factor) varied at three different level: low (-1), medium (0), and high (+1) levels. The drug release and disintegration time used as dependent variables (response). and formulation was evaluated for weight variation, thickness, folding endurance, drug content, in- vitro disintegration, in vitro dissolution study and stability study. Based on results it was concluded that MDF (F3) showed enhanced bioavailability and faster onset of action. Keywords: Prochlorperazine maleate, Mouth dissolving film, bioavailability


Author(s):  
K. Sampath Kumar ◽  
D. Maheswara Reddy ◽  
Y. Dastagiri Reddy ◽  
J. Balanarasimha Goud ◽  
Abdul Basith

Background: The concept of formulating ODT containing montelukast sodium offers an appropriate, practical approach to accomplish fast release of the drug. Absorption of these tablets takes place directly into the systemic circulation which bipass the hepatic first-pass metabolism of montelukast sodium which ultimately results in the improvement in the bioavailability. Method: In the present study ODT tablets of montelukast sodium were prepared by using different Superdisintegrants like natural and synthetic (tulasi, hibiscus, orange peel powder, Ispaghula, banana peel powder, Crospovidone). Thirteen formulations were designed, using a two level of Superdisintegrants (minimum and maximum concentration) and employing two Superdisintegrants at a time by using the co-processed technique. Results: No significant drug and excipients interaction was observed. The prepared tablets were evaluated by weight variation, thickness, hardness, friability, drug content uniformity, disintegration time, wetting time, in-vitro dissolution studies. A formulation containing 6mg of natural and synthetic Superdisintegrants was offered the relatively rapid release of montelukast sodium when compared with other concentrations employed in this investigation. Conclusion: Montelukast sodium formulation were prepared by Crospovidone and ispaghula combination of Superdisintegrants were releases 98.91% drug in 30 min.


Sign in / Sign up

Export Citation Format

Share Document