APPLICATION OF THE GAUSSIAN FUNCTION TO APPROXIMATION OF THE EARTH’S SURFACE SUBSIDENCE CURVES

2017 ◽  
Vol 8 ◽  
pp. 187-194
Author(s):  
Yu.V. Posyl'nyy ◽  
◽  
A.V. Vyal'tsev ◽  
V.V. Popov ◽  
F.I. Yagodkin ◽  
...  
2015 ◽  
Vol 1 (1) ◽  
pp. 13-20
Author(s):  
Hamid Reza Samadi ◽  
Mohammad Reza Samadi

Due to the development of cities as well as rapid population growth, urban traffic is increasing nowadays. Hence, to improve traffic flow, underground structures such as metro, especially in metropolises, are inevitable. This paper is a research on the twin tunnels Of Isfahan's metro between Shariaty station and Azadi station from the North towards the South. In this study, simultaneous drilling of subway's twin tunnels is simulated by means of Finite Difference Method (FDM) and FLAC 3D software. Moreover, the lowest distance between two tunnels is determined in a way that the Law of Super Position could be utilized to manually calculate the amount of surface subsidence, resulted by drilling two tunnels, by employing the results of the analysis of single tunnels without using simultaneous examination and simulation. In this paper, this distance is called "effective distance". For this purpose, first, the optimum dimensions of the model is chosen and then, five models with optimum dimensions will be analyzed separately, each of which in three steps. The results of analyses shows that the proportions (L/D) greater than or equal 2.80, the Law of Super Position can be applied for prediction of surface subsidence, caused by twin tunnels' construction


Author(s):  
Volodymyr Shymkovych ◽  
Sergii Telenyk ◽  
Petro Kravets

AbstractThis article introduces a method for realizing the Gaussian activation function of radial-basis (RBF) neural networks with their hardware implementation on field-programmable gaits area (FPGAs). The results of modeling of the Gaussian function on FPGA chips of different families have been presented. RBF neural networks of various topologies have been synthesized and investigated. The hardware component implemented by this algorithm is an RBF neural network with four neurons of the latent layer and one neuron with a sigmoid activation function on an FPGA using 16-bit numbers with a fixed point, which took 1193 logic matrix gate (LUTs—LookUpTable). Each hidden layer neuron of the RBF network is designed on an FPGA as a separate computing unit. The speed as a total delay of the combination scheme of the block RBF network was 101.579 ns. The implementation of the Gaussian activation functions of the hidden layer of the RBF network occupies 106 LUTs, and the speed of the Gaussian activation functions is 29.33 ns. The absolute error is ± 0.005. The Spartan 3 family of chips for modeling has been used to get these results. Modeling on chips of other series has been also introduced in the article. RBF neural networks of various topologies have been synthesized and investigated. Hardware implementation of RBF neural networks with such speed allows them to be used in real-time control systems for high-speed objects.


2021 ◽  
pp. 204141962199349
Author(s):  
Jordan J Pannell ◽  
George Panoutsos ◽  
Sam B Cooke ◽  
Dan J Pope ◽  
Sam E Rigby

Accurate quantification of the blast load arising from detonation of a high explosive has applications in transport security, infrastructure assessment and defence. In order to design efficient and safe protective systems in such aggressive environments, it is of critical importance to understand the magnitude and distribution of loading on a structural component located close to an explosive charge. In particular, peak specific impulse is the primary parameter that governs structural deformation under short-duration loading. Within this so-called extreme near-field region, existing semi-empirical methods are known to be inaccurate, and high-fidelity numerical schemes are generally hampered by a lack of available experimental validation data. As such, the blast protection community is not currently equipped with a satisfactory fast-running tool for load prediction in the near-field. In this article, a validated computational model is used to develop a suite of numerical near-field blast load distributions, which are shown to follow a similar normalised shape. This forms the basis of the data-driven predictive model developed herein: a Gaussian function is fit to the normalised loading distributions, and a power law is used to calculate the magnitude of the curve according to established scaling laws. The predictive method is rigorously assessed against the existing numerical dataset, and is validated against new test models and available experimental data. High levels of agreement are demonstrated throughout, with typical variations of <5% between experiment/model and prediction. The new approach presented in this article allows the analyst to rapidly compute the distribution of specific impulse across the loaded face of a wide range of target sizes and near-field scaled distances and provides a benchmark for data-driven modelling approaches to capture blast loading phenomena in more complex scenarios.


Author(s):  
Qing Ding ◽  
Zhenfeng Shao ◽  
Xiao Huang ◽  
Orhan Altan ◽  
Qingwei Zhuang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document