scholarly journals Air Quality Characteristics in Junior High School Classroom with Natural Ventilation in Pangkep Regency

2019 ◽  
Vol 2 (2) ◽  
pp. 157-161
Author(s):  
Nur Mutmainnah ◽  
Rosady Mulyadi ◽  
Baharuddin Hamzah

The indoor air quality room has turned out to be a major concern due to its adverse effects on human health. This is related to the level of activity of human spend almost 90 percent of their time indoors. This study aims to identify the characteristics of air quality in classrooms with natural ventilation systems in three different schools which vary in topography and the surrounding environment, namely coastal areas, lowlands, and mountains. Air quality measurement focuses on CO, CO2 concentration, total dust content, temperature, humidity, and airflow velocity. The statistical results showed significantly different (p <0.05) in air quality parameters among those three schools. The CO and CO2 concentrations in the three schools are below the recommendations required by DOSH and ASHRAE. This clarifies that a well-used of a natural ventilation system is able to maintain the air quality in the classroom. The measurement of total dust levels was above the threshold required by the Ministry of Health of the Republic of Indonesia No.1405/MENKES/SK/XI/2002. In addition, there was a significant relationship (p <0.05) between air pollutants and meteorological factors such as temperature and air humidity in the classroom. The study found that there was an influence of human activity level and the surrounding environment on the amount of pollutants concentration in the classroom.

Author(s):  
Marek Telejko ◽  
Ewa Zender-Swiercz

Most primary school buildings in Poland rely on natural ventilation. This fact is attributed to the age of these buildings constructed more than dozen or even several tens of years ago. Few of them were fitted with a mechanical ventilation system allowing for the adjustment of microclimate parameters. The national requirements for gravity ventilation provide general guidelines, specifying strict description only for the airtightness of windows and doors and the minimum airflow to be supplied to the rooms. The minimum airflow supplied is independent of the number of occupants and purpose of the room. Low indoor air quality (IAQ) can impact occupants’ health and lead to poor productivity or low academic performance. Therefore the provision of good IAQ in classrooms and laboratories is very important. This paper presents the results of the investigation devoted to the quality of indoor air in classrooms of selected Polish primary school. Six primary school in a town with a population of 200 000 inhabitants were involved in the investigations. The participating school buildings were built between 1976 and 1994 and had gravity ventilation systems. The variability of basic IAQ parameters, i.e., temperature, relative humidity and carbon dioxide level, was analysed and the assessment of the classrooms in terms of microbiological purity was performed. The outcomes confirmed the low quality of the indoor air in these buildings. The maximum value of CO2 concentration amounted to more than 4000 ppm. Certain modifications aimed at improving IAQ were proposed during the investigations. Two solutions were implemented. The results of this study indicate that the proposed solution offers the potential to improve IAQ within classrooms.


2014 ◽  
Vol 13 (4) ◽  
pp. 041-048
Author(s):  
Marek Telejko

The article presents the results of indoor air quality (IAQ) assessment in four local preschools. The natural ventilation system was used in the buildings. Outdoor air was supplied to the premises through a leak in the external walls and air intakes were of maximum efficiency of 30 m3/h. Parameters describing IAQ were measured, such as: temperature, relative humidity and carbon dioxide concentration. Two series of studies were performed in each preschool. On the basis of the survey, it can be clearly stated that the indoor air quality in preschools is considered to be very low very low. All the analyzed parameters describing the quality do not meet the current legal requirements. Reported values of CO2 concentration exceeded three times the value set of the recommended maximum.


2020 ◽  
pp. 1-19
Author(s):  
Cezary Kulis ◽  
Jarosław Müller

The aim of the research was to design and validate the prototype of a device developed to improve the quality of indoor air by supporting the natural ventilation in building. A CO2 sensor and thermo-hygrometer were used to measure the physical parameters of the indoor air. The developed device is based on the Raspberry Pi single-board-computer (SBC) and optical sensors. The prototype casing was made using 3D printing technology. The software was written using the Python 2.7 programming language. The key algorithm of control uses fuzzy logic. The effectiveness of the developed device has been confirmed. The use of the device enabled improvement of the indoor air quality. The presented device may be a solution to improve the indoor air quality by supporting the ventilation system.


2021 ◽  
Vol 16 (3) ◽  
pp. 774-793
Author(s):  
Nur Baitul Izati Rasli ◽  
Nor Azam Ramli ◽  
Mohd Rodzi Ismail

This study observed the influence of different ventilation, indoor and outdoor activities (i.e., cooking, praying, sweeping, gathering, and exhaust from motorcycle) between a bungalow house (i.e., stack and cross ventilation applications) and a terrace house (i.e., one-sided ventilation application). We appraised the indoor air quality (IAQ) and thermal comfort. We monitored the indoor air contaminants (i.e., TVOC, CO, CH2O, PM10, O3, and CO2) and specific physical parameters (i.e., T, RH, and AS) for four days in the morning (i.e., 6.00 a.m. – 9.00 a.m.), morning-evening (i.e., 11.00 a.m. – 2.00 p.m.), and evening-night (i.e., 5.00 p.m. – 8.00 p.m.) sessions. The results found that cooking activities are the major activities that contributed to the increase of the TVOC, CO, PM10, O3, and CO2 concentrations in the bungalow and terrace houses. However, IAQ exceeded the Industry Code of Practice on IAQ (ICOP) limit in the terrace house. The bungalow house applies stack and cross ventilation, double area, and a long pathway of indoor air contaminants movements. Besides that, the results indicated that cooking activities worsen the ventilation system because CO2 exceeded the ICOP limit on Day 2 at 74.1 % (evening-night session) and Day 3 at 13.2 % (morning session), 11% (morning-evening session), and 50.1 % (evening-night session). Moreover, the combination of mechanical (i.e., opened all fans) and natural ventilation (i.e., opened all doors, windows, and fans) is the best application in the house without a cooking ventilator with lower indoor air movement. Furthermore, the temperatures exceeding the ICOP limit of 23-26 °C for both bungalow and terrace houses could be lower indoor air movement, which is less than the ICOP limit of 0.15-0.5 m/s and high outdoor air temperature. Therefore, it is prudent to have an efficient ventilation system for acceptable indoor air quality and thermal comfort in the family house.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2845 ◽  
Author(s):  
Katarzyna Gładyszewska-Fiedoruk ◽  
Vasyl Zhelykh ◽  
Andrii Pushchinskyi

The quality of internal air is one of the factors that affect the pace and quality of knowledge acquisition. Therefore, it is important that classrooms have high quality of air. Using computer simulation, the effect of various building ventilation variants on air quality in classrooms was analyzed. Two criteria were analyzed and six variants of ventilation. The analysis was carried out using the CONTAMW program, used for multi-zone analysis of ventilation and air quality in a building. As an indicator of air quality, the concentration of carbon dioxide in school halls was adopted. The analyses show that natural ventilation is not able to provide proper air exchange. Regular airing of classrooms during breaks can reduce the carbon dioxide concentration to 2500 ppm, however, there is a significant reduction in indoor temperature (even below 10 °C). The best control over the internal environment can be obtained by using a supply–exhaust ventilation system with heat recovery. Obtaining a higher stabilization of ventilation is achieved by supplying additional energy to drive fans, however, this is only a small amount of energy compared to the cost of heat for heating the building (maximum 2%).


2019 ◽  
Vol 808 ◽  
pp. 39-45
Author(s):  
Mária Budiaková

The paper focuses on the analysis of reconstruction in terms of CO2 concentration. The reconstruction at the university included the exchange of windows. The original windows were exchanged for the modern wood tight windows. Providing CO2 concentration in the interiors of a university is immensely important for the students of the university. Not exceeding CO2 concentration limits is necessary not only for the physiological needs of students but also for the required performance of students. Teaching is conducted during the whole day in the researched university schoolroom. The short-term natural ventilation during the breaks is noticeably not sufficient. After 15 minutes from the beginning of the lesson, students started complaining about the air quality and they had to open the windows. To point out the unsustainable state of the poor air quality during the day-long teaching and to be able to prove the officials the importance of the continuation of the reconstruction by building mechanical ventilation or air conditioning system, there were carried out the experimental measurements in the schoolroom. The device Testo 480 was used for the measurements. Obtained values of CO2 concentration are presented in the charts. Interestingly, this reconstruction significantly decreased the air quality. The admissible values of CO2 concentration were exceeded after the first hours of teaching. These values were worsening with each additional hour of teaching. Therefore, another reconstruction is needed to enable the transition from natural ventilation to the mechanical ventilation system. In the conclusion of this paper, there are principles how to design new schoolrooms. Furthermore, there are presented recommendations how to operate the existing schoolrooms.


2018 ◽  
Vol 8 (1) ◽  
pp. 13-18
Author(s):  
I. L. Cîrstolovean ◽  
M. Horneț ◽  
Ana Diana Ancas ◽  
M. Profire

Abstract The goals of this paper are to estimate some parameters – indoor temperature and ventilation rate - necessary to determine the heat load demand for ventilation in the amphitheatre named ‘A TALPOSI’-Faculty of Buildings Engineering- with a number of at the most 120 occupants. The study presented in this paper is made when in the amphitheatre it is necessary to assure a comfortable temperature by a permanent functioning of the heating system. The number of air exchanges necessary in the amphitheatre in the natural ventilation process, more exactly, to assure a minimum air exchanges, is imposed by the requirements for the assurance of physiologic comfort in the amphitheatre for the time interval when it is occupied by students. The inner air debit should cover the harmful emissions in the amphitheatre. By the help of these calculated (measured) parameters we have calculated the heat load for ventilation. In the end, with the data obtained from calculations and measurements we find ourselves in the situation of establishing the size of the heat exchanger corresponding to the room, to heat the fresh air taken from outside and send it inside the amphitheatre. The measurements are made with the TESTO apparatus of the faculty. The minimum requirements to assure the thermal comfort are: to achieve a minimum internal temperature θi (t) higher than (or equal to) the normal indoor temperature associated to this space and to assure the air quality, the air exchange rate. The authors want to highlight by this study the necessity and importance of the control on the number of air exchanges in rooms with a high number of occupants and overall, the control of the fresh air debits. The fact that the focus is more and more on heat loss cuts in rooms by tightening closing elements gives birth to the necessity of control of the ventilation system with effects on the consumption of mechanical energy.


Author(s):  
Ion-Costinel Mareș ◽  
Tiberiu Catalina ◽  
Marian-Andrei Istrate ◽  
Alexandra Cucoș ◽  
Tiberius Dicu ◽  
...  

The purpose of this article is the assessment of energy efficiency and indoor air quality for a single-family house located in Cluj-Napoca County, Romania. The studied house is meant to be an energy-efficient building with thermal insulation, low U-value windows, and a high efficiency boiler. Increasing the energy efficiency of the house leads to lower indoor air quality, due to lack of natural ventilation. As the experimental campaign regarding indoor air quality revealed, there is a need to find a balance between energy consumption and the quality of the indoor air. To achieve superior indoor air quality, the proposed mitigation systems (decentralized mechanical ventilation with heat recovery combined with a minimally invasive active sub-slab depressurization) have been installed to reduce the high radon level in the dwelling, achieving an energy reduction loss of up to 86%, compared to the traditional natural ventilation of the house. The sub-slab depressurization system was installed in the room with the highest radon level, while the local ventilation system with heat recovery has been installed in the exterior walls of the house. The results have shown significant improvement in the level of radon decreasing the average concentration from 425 to 70 Bq/m 3, respectively the carbon dioxide average of the measurements being around 760 ppm. The thermal comfort improves significantly also, by stabilizing the indoor temperature at 21 °C, without any important fluctuations. The installation of this system has led to higher indoor air quality, with low energy costs and significant energy savings compared to conventional ventilation (by opening windows).


2015 ◽  
Vol 763 ◽  
pp. 105-109
Author(s):  
Shih Ming Chen ◽  
Yu Ying Huang ◽  
Yeng Horng Perng

In recent years, the issues of indoor air quality and thermal comfort in underground garages have attained considerable importance. The purpose of this study is to present a green natural ventilation system with a ventilation shaft connected to the outdoors through a horizontal branch pipe. The system combines with a diaphragm wall and steel cage frame for an underground garage or similar underground enclosed spaces. The design system reduces use of tradition fans and motors used in mechanical ventilation. It improves exhaust from indoor spaces and reduces energy consumption. The green design of the ventilation system in this study is cost effective, saves energy and improves the air quality in an underground garage.


Author(s):  
Richard Nagy ◽  
Ľudmila Mečiarová ◽  
Silvia Vilčeková ◽  
Eva Krídlová Burdová ◽  
Danica Košičanová

This paper emphasizes the importance of environmental protection regarding the reduction of energy consumption while maintaining living standards. The aim of the research is to observe the effects of mechanical and natural ventilation on energy consumption and building operation as well as indoor environmental quality (IEQ). The results of indoor environmental quality testing show that the mean relative humidity (31%) is in the permissible range (30%–70%); the mean CO2 concentration (1050.5 ppm) is above the recommended value of 1000 ppm according to Pettenkofer; and the mean PM10 concentration (43.5 µg/m3) is under the limit value of 50 µg/m3. A very large positive correlation is found between relative humidity and concentration of CO2 as well as between the concentration of PM5 and the concentration of CO2. The most commonly occurring sick building syndrome (SBS) symptoms are found to be fatigue and the feeling of a heavy head.


Sign in / Sign up

Export Citation Format

Share Document