scholarly journals From nano to macro: Enabling Nanotechnologies for Human Organ Biofabrication (Electrospun Nanofibers and Hybrid Technique)

Author(s):  
Rodrigo Alvarenga Rezende ◽  
Marcos Antonio Sabino ◽  
Janaína De Andréa Dernowsek ◽  
Fábio De Albuquerque Vilalba ◽  
Vladimir Mironov ◽  
...  

This review proposes to present how materials at nanolevel scale can contribute to the development of three-dimensional (3D) structures, human tissues, and organs which have macrolevel organization. Specific nanomaterials such as nanofibers and nanoparticles are presented and discussed in their application for biofabricating 3D human tissues and organs. The concept of self-assembling magnetic tissue spheroids as an intermediate mesolevel structure between nano and macrolevel organization and building blocks for biofabrication in dual scale level of complex 3D human tissues and organs is detached. The challenges and perspectives of employing nanomaterials and nanotechnological strategies in the biofabrication were also traced.

2012 ◽  
Vol 40 (4) ◽  
pp. 629-634 ◽  
Author(s):  
Tibor Doles ◽  
Sabina Božič ◽  
Helena Gradišar ◽  
Roman Jerala

Bionanotechnology seeks to modify and design new biopolymers and their applications and uses biological systems as cell factories for the production of nanomaterials. Molecular self-assembly as the main organizing principle of biological systems is also the driving force for the assembly of artificial bionanomaterials. Protein domains and peptides are particularly attractive as building blocks because of their ability to form complex three-dimensional assemblies from a combination of at least two oligomerization domains that have the oligomerization state of at least two and three respectively. In the present paper, we review the application of polypeptide-based material for the formation of material with nanometre-scale pores that can be used for the separation. Use of antiparallel coiled-coil dimerization domains introduces the possibility of modulation of pore size and chemical properties. Assembly or disassembly of bionanomaterials can be regulated by an external signal as demonstrated by the coumermycin-induced dimerization of the gyrase B domain which triggers the formation of polypeptide assembly.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shota Ono

AbstractSome of the three-dimensional (3D) crystal structures are constructed by stacking two-dimensional (2D) layers. To study whether this geometric concept, i.e., using 2D layers as building blocks for 3D structures, can be applied to computational materials design, we theoretically investigate the dynamical stability of copper-based compounds CuX (a metallic element X) in the B$$_h$$ h and L1$$_1$$ 1 structures constructed from the buckled honeycomb (BHC) structure and in the B2 and L1$$_0$$ 0 structures constructed from the buckled square (BSQ) structure. We demonstrate that (i) if CuX in the BHC structure is dynamically stable, those in the B$$_h$$ h and L1$$_1$$ 1 structures are also stable. Using molecular dynamics simulations, we particularly show that CuAu in the B$$_h$$ h and L1$$_1$$ 1 structures withstand temperatures as high as 1000 K. Although the interrelationship of the metastability between the BSQ and the 3D structures (B2 and L1$$_0$$ 0 ) is not clear, we find that (ii) if CuX in the B2 (L1$$_0$$ 0 ) structure is dynamically stable, that in the L1$$_0$$ 0 (B2) is unstable. This is rationalized by the tetragonal Bain path calculations.


Author(s):  
Eric Bonabeau ◽  
Marco Dorigo ◽  
Guy Theraulaz

Social insect nest architectures can be complex, intricate structures. Stigmergy (see section 1.2.3), that is, the coordination of activities through the environment, is an important mechanism underlying nest construction in social insects. Two types of stigmergy are distinguished: quantitative, or continuous stigmergy, in which the different stimuli that trigger behavior are quantitatively different; and qualitative, or discrete stigmergy, in which stimuli can be classified into different classes that differ qualitatively. If quantitative stigmergy can explain the emergence of pillars in termites, the building behavior of the paper wasps Polistes dominulus seems to be better described by qualitative stigmergy. In this chapter, a simple agent-based model inspired by discrete stigmergy is introduced. In the model, agents move in a three-dimensional grid and drop elementary building blocks depending on the configuration of blocks in their neighborhood. From the viewpoint of bricks, this model is a model of self-assembly. The model generates a large proportion of random or space-filling forms, but some patterns appear to be structured. Some of the patterns even look like wasp nests. The properties of the structured shapes obtained with the model, and of the algorithms that generate them, are reviewed. Based on these properties, a fitness function is constructed so that structured architectures have a large fitness and unstructured patterns a small fitness. A genetic algorithm based on the fitness function is used to explore the space of architectures. Several examples of self-assembling systems in robotics, engineering, and architecture are described. Self-assembling or self-reconfigurable robotic systems, although they are not directly inspired by nest construction in social insects, could benefit from the discrete-stigmergy model of nest building. The method of evolutionary design, that is, the creation of new designs by computers using evolutionary algorithms, is a promising way of exploring the patterns that self-assembling models can produce. Many animals can produce very complex architectures that fulfill numerous functional and adaptive requirements (protection from predators, substrate of social life and reproductive activities, thermal regulation, etc.).


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Rodrigo A. Rezende ◽  
Fábio de Souza Azevedo ◽  
Frederico David Pereira ◽  
Vladimir Kasyanov ◽  
Xuejun Wen ◽  
...  

Nanotechnology is a rapidly emerging technology dealing with so-called nanomaterials which at least in one dimension have size smaller than 100 nm. One of the most potentially promising applications of nanotechnology is in the area of tissue engineering, including biofabrication of 3D human tissues and organs. This paper focused on demonstrating how nanomaterials with nanolevel size can contribute to development of 3D human tissues and organs which have macrolevel organization. Specific nanomaterials such as nanofibers and nanoparticles are discussed in the context of their application for biofabricating 3D human tissues and organs. Several examples of novel tissue and organ biofabrication technologies based on using novel nanomaterials are presented and their recent limitations are analyzed. A robotic device for fabrication of compliant composite electrospun vascular graft is described. The concept of self-assembling magnetic tissue spheroids as an intermediate structure between nano- and macrolevel organization and building blocks for biofabrication of complex 3D human tissues and organs is introduced. The design of in vivo robotic bioprinter based on this concept and magnetic levitation of tissue spheroids labeled with magnetic nanoparticles is presented. The challenges and future prospects of applying nanomaterials and nanotechnological strategies in organ biofabrication are outlined.


2003 ◽  
Vol 773 ◽  
Author(s):  
C. Tamerler ◽  
S. Dinçer ◽  
D. Heidel ◽  
N. Karagûler ◽  
M. Sarikaya

AbstractProteins, one of the building blocks in organisms, not only control the assembly in biological systems but also provide most of their complex functions. It may be possible to assemble materials for practical technological applications utilizing the unique advantages provided by proteins. Here we discuss molecular biomimetic pathways in the quest for imitating biology at the molecular scale via protein engineering. We use combinatorial biology protocols to select short polypeptides that have affinity to inorganic materials and use them in assembling novel hybrid materials. We give an overview of some of the recent developments of molecular engineering towards this goal. Inorganic surface specific proteins were identified by using cell surface and phage display technologies. Examples of metal and metal oxide specific polypeptides were represented with an emphasis on certain level of specificities. The recognition and self assembling characteristics of these inorganic-binding proteins would be employed in develeopment of hybrid multifunctional materials for novel bio- and nano-technological applications.


2012 ◽  
Vol 9 (1) ◽  
pp. 43 ◽  
Author(s):  
Hueyling Tan

Molecular self-assembly is ubiquitous in nature and has emerged as a new approach to produce new materials in chemistry, engineering, nanotechnology, polymer science and materials. Molecular self-assembly has been attracting increasing interest from the scientific community in recent years due to its importance in understanding biology and a variety of diseases at the molecular level. In the last few years, considerable advances have been made in the use ofpeptides as building blocks to produce biological materials for wide range of applications, including fabricating novel supra-molecular structures and scaffolding for tissue repair. The study ofbiological self-assembly systems represents a significant advancement in molecular engineering and is a rapidly growing scientific and engineering field that crosses the boundaries ofexisting disciplines. Many self-assembling systems are rangefrom bi- andtri-block copolymers to DNA structures as well as simple and complex proteins andpeptides. The ultimate goal is to harness molecular self-assembly such that design andcontrol ofbottom-up processes is achieved thereby enabling exploitation of structures developed at the meso- and macro-scopic scale for the purposes oflife and non-life science applications. Such aspirations can be achievedthrough understanding thefundamental principles behind the selforganisation and self-synthesis processes exhibited by biological systems.


2020 ◽  
Vol 26 (42) ◽  
pp. 7537-7554 ◽  
Author(s):  
Juan Zeng ◽  
Zunnan Huang

Background: The rapidly increasing number of known protein sequences calls for more efficient methods to predict the Three-Dimensional (3D) structures of proteins, thus providing basic knowledge for rational drug design. Understanding the folding mechanism of proteins is valuable for predicting their 3D structures and for designing proteins with new functions and medicinal applications. Levinthal’s paradox is that although the astronomical number of conformations possible even for proteins as small as 100 residues cannot be fully sampled, proteins in nature normally fold into the native state within timescales ranging from microseconds to hours. These conflicting results reveal that there are factors in organisms that can assist in protein folding. Methods: In this paper, we selected a crowded cell-like environment and temperature, and the top three Posttranslational Modifications (PTMs) as examples to show that Levinthal’s paradox does not reflect the folding mechanism of proteins. We then revealed the effects of these factors on protein folding. Results: The results summarized in this review indicate that a crowded cell-like environment, temperature, and the top three PTMs reshape the Free Energy Landscapes (FELs) of proteins, thereby regulating the folding process. The balance between entropy and enthalpy is the key to understanding the effect of the crowded cell-like environment and PTMs on protein folding. In addition, the stability/flexibility of proteins is regulated by temperature. Conclusion: This paper concludes that the cellular environment could directly intervene in protein folding. The long-term interactions of the cellular environment and sequence evolution may enable proteins to fold efficiently. Therefore, to correctly understand the folding mechanism of proteins, the effect of the cellular environment on protein folding should be considered.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 691
Author(s):  
Francisco-José Gallardo-Basile ◽  
Yannick Naunheim ◽  
Franz Roters ◽  
Martin Diehl

Lath martensite is a complex hierarchical compound structure that forms during rapid cooling of carbon steels from the austenitic phase. At the smallest, i.e., ‘single crystal’ scale, individual, elongated domains, form the elemental microstructural building blocks: the name-giving laths. Several laths of nearly identical crystallographic orientation are grouped together to blocks, in which–depending on the exact material characteristics–clearly distinguishable subblocks might be observed. Several blocks with the same habit plane together form a packet of which typically three to four together finally make up the former parent austenitic grain. Here, a fully parametrized approach is presented which converts an austenitic polycrystal representation into martensitic microstructures incorporating all these details. Two-dimensional (2D) and three-dimensional (3D) Representative Volume Elements (RVEs) are generated based on prior austenite microstructure reconstructed from a 2D experimental martensitic microstructure. The RVEs are used for high-resolution crystal plasticity simulations with a fast spectral method-based solver and a phenomenological constitutive description. The comparison of the results obtained from the 2D experimental microstructure and the 2D RVEs reveals a high quantitative agreement. The stress and strain distributions and their characteristics change significantly if 3D microstructures are used. Further simulations are conducted to systematically investigate the influence of microstructural parameters, such as lath aspect ratio, lath volume, subblock thickness, orientation scatter, and prior austenitic grain shape on the global and local mechanical behavior. These microstructural features happen to change the local mechanical behavior, whereas the average stress–strain response is not significantly altered. Correlations between the microstructure and the plastic behavior are established.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jin Yeong Song ◽  
Hyun Il Ryu ◽  
Jeong Myeong Lee ◽  
Seong Hwan Bae ◽  
Jae Woo Lee ◽  
...  

AbstractElectrospinning is a common and versatile process to produce nanofibers and deposit them on a collector as a two-dimensional nanofiber mat or a three-dimensional (3D) macroscopic arrangement. However, 3D electroconductive collectors with complex geometries, including protruded, curved, and recessed regions, generally caused hampering of a conformal deposition and incomplete covering of electrospun nanofibers. In this study, we suggested a conformal fabrication of an electrospun nanofiber mat on a 3D ear cartilage-shaped hydrogel collector based on hydrogel-assisted electrospinning. To relieve the influence of the complex geometries, we flattened the protruded parts of the 3D ear cartilage-shaped hydrogel collector by exploiting the flexibility of the hydrogel. We found that the suggested fabrication technique could significantly decrease an unevenly focused electric field, caused by the complex geometries of the 3D collector, by alleviating the standard deviation by more than 70% through numerical simulation. Furthermore, it was experimentally confirmed that an electrospun nanofiber mat conformally covered the flattened hydrogel collector with a uniform thickness, which was not achieved with the original hydrogel collector. Given that this study established the conformal electrospinning technique on 3D electroconductive collectors, it will contribute to various studies related to electrospinning, including tissue engineering, drug/cell delivery, environmental filter, and clothing.


1997 ◽  
Vol 3 (S2) ◽  
pp. 431-432
Author(s):  
S. A. Harfenist ◽  
Z. L. Wang ◽  
R. L. Whetten ◽  
I. Vezmar ◽  
M. M. Alvarez ◽  
...  

Silver nanocrystals passivated by dodecanethiol self-assembled monolayers were produced using an aerosol technique described in detail elsewhere [1]. Self-assembling passivated nanocrystal-superlattices (NCS's) involve self-organization into monolayers, thin films, and superlattices of size-selected nanoclusters encapsulated in a protective compact coating [2,3,4,5,6,7]. We report the preparation and structure characterization of three-dimensional (3-D) hexagonal close-packed Ag nanocrystal supercrystals from Ag nanocrystals of ˜4.5 nm in diameters. The crystallography of the superlattice and atomic core lattices were determined using transmission electron microscopy (TEM) and high-resolution TEM.SEM was used to image the nanocrystal superlattices formed on an amorphous carbon film of an TEM specimen grid (fig. la). The superlattice films show well shaped, sharply faceted, triangular shaped sheets. Figure lb depicts numerous Ag nanocrystal aggregates uniformly distributed over the imaging region. Inset in this figure is an enlargement of the boxed region at the edge of a supercrystal typifying the ordered nanocrystal packing.


Sign in / Sign up

Export Citation Format

Share Document