scholarly journals Stability of Retained Austenite in High-Strength Martensitic Steels during Cold Deformation

Author(s):  
Stepan Jenicek ◽  
Dagmar Bublikova ◽  
Hana Jirkova ◽  
Josef Kana
2017 ◽  
Vol 17 (4) ◽  
pp. 428-433 ◽  
Author(s):  
Dagmar Bublíková ◽  
Bohuslav Mašek ◽  
Ivan Vorel ◽  
Štěpán Jeníček

Author(s):  
T. M. Hatem ◽  
M. A. Zikry

A multiple-slip dislocation-density-based crystalline formulation, specialized finite-element formulations, and Voronoi tessellations adapted to martensitic orientations were used to investigate dislocation-density activities and crack tip blunting in high strength martensitic steels. The formulation is based on accounting for variant morphologies and orientations, retained austenite, and initial dislocations densities that are uniquely inherent to martensitic microstructures. The effects of variant distributions and arrangements are investigated for different crack and void interaction distributions and arrangements. The analysis indicates that for certain orientations related to specific variant block arrangements, which correspond to random low angle orientations, cracks can be blunted by dislocation-density activities along transgranular planes. For other variant block arrangements, which correspond to random high angle orientations, sharp crack growth can occur due to dislocation activities along intergranular planes.


2011 ◽  
Vol 409 ◽  
pp. 696-701 ◽  
Author(s):  
Junya Kobayashi ◽  
Koh Ichi Sugimoto ◽  
Goro Arai

Recently developed ultra high-strength low alloy transformation-induced plasticity (TRIP)-aided steel with martensitic lath structure matrix or "TRIP-aided Martensitic steel; TM steel" possesses a high impact toughness. In this study, to apply the TM steel to some hot-forging parts, the effects of hot-forging on microstructure, retained austenite characteristics, tensile properties and toughness in the TM steels with chemical composition of 0.3-0.4%C, 1.5%Si, 1.5%Mn, 0.002%B, 0.02Ti, 0.05Nb (mass%) were investigated. The hot forging brought on an excellent combinations of tensile strength of 1500-2000 MPa or 0.2% offset proof stress of 1200-1560 MPa and Charpy impact absorbed value of 35-80 J/cm2 when partitioned at 250-350°C after quenching in oil. The combinations exceeded so much those of the conventional quench and tempering structural steels. From examinations of microstructure and retained austenite characteristics, it was found that the excellent combinations are mainly caused by (i) refined and uniform martensitic lath structure matrix with a small amount of carbide, (ii) increasing narrow martensite with high dislocation density and (iii) the increased stability of retained austenite, resulting from the FQP process.


2021 ◽  
Vol 1016 ◽  
pp. 654-659
Author(s):  
Naoya Kakefuda ◽  
Shintaro Aizawa ◽  
Ryo Sakata ◽  
Junya Kobayashi ◽  
Goroh Itoh ◽  
...  

Low alloy TRIP steel is expected to be applied to automobile bodies because of its high strength, high ductility, and excellent impact properties and press formability. It has been reported that the low alloy TRIP steel of hydrogen embrittlement resistance is improved by utilizing the hydrogen storage characteristics of highly stable retained austenite. Therefore, for the purpose of increasing the volume fraction of retained austenite, it was produced at various cooling rates below the martensite transformation start temperature. As a result, the volume fraction of retained austenite increased, and then the effect of hydrogen embrittlement decreased. The matrix phase and retained austenite is refined with decrees of the cooling rate. It is considered that the size and surface area of the retained austenite also affected the improvement of hydrogen embrittlement resistance.


2012 ◽  
Vol 52 (6) ◽  
pp. 1124-1129 ◽  
Author(s):  
Junya Kobayashi ◽  
Sung-Moo Song ◽  
Koh-ichi Sugimoto

2010 ◽  
Vol 654-656 ◽  
pp. 218-221 ◽  
Author(s):  
Jong Chul Lee ◽  
Ui Gu Kang ◽  
Chang Suk Oh ◽  
Sung Joon Kim ◽  
Won Jong Nam

The effects of deformation strains and annealing temperatures on microstructures and mechanical properties of martensitic steels were examined. The amount of cold deformation was changed as 30%, 50% and 60%, and annealing temperatures varied from 500°C to 600°C. In samples cold rolled 30%, the dominant microstructure for an annealing at 500°C was dislocation substructures with uniformly distributed rod-shaped carbide particles. For an annealing at 600°C, the microstructure consisted of equiaxed ultrafine grains, spherical carbide particles and elongated dislocation substructures. A proper annealing temperature for martensitic steels received 30% reduction, showing a good combination of a high strength, 1230MPa, and an adequate total elongation. 9.4%, was found as 500°C.


Metals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 6 ◽  
Author(s):  
Tomohiko Hojo ◽  
Junya Kobayashi ◽  
Koh-ichi Sugimoto ◽  
Akihiko Nagasaka ◽  
Eiji Akiyama

To develop ultra high-strength cold stamping steels for automobile frame parts, the effects of alloying elements on hydrogen embrittlement properties of ultra high-strength low alloy transformation induced plasticity (TRIP)-aided steels with a martensite matrix (TM steels) were investigated using the four-point bending test and conventional strain rate tensile test (CSRT). Hydrogen embrittlement properties of the TM steels were improved by the alloying addition. Particularly, 1.0 mass% chromium added TM steel indicated excellent hydrogen embrittlement resistance. This effect was attributed to (1) the decrease in the diffusible hydrogen concentration at the uniform and fine prior austenite grain and packet, block, and lath boundaries; (2) the suppression of hydrogen trapping at martensite matrix/cementite interfaces owing to the suppression of precipitation of cementite at the coarse martensite lath matrix; and (3) the suppression of the hydrogen diffusion to the crack initiation sites owing to the high stability of retained austenite because of the existence of retained austenite in a large amount of the martensite–austenite constituent (M–A) phase in the TM steels containing 1.0 mass% chromium.


2021 ◽  
Vol 291 ◽  
pp. 129448
Author(s):  
L.J. Wei ◽  
X.M. Ji ◽  
Y.S. Yu ◽  
R.D.K. Misra ◽  
P.C. Liu ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1136
Author(s):  
Marcel Carpio ◽  
Jessica Calvo ◽  
Omar García ◽  
Juan Pablo Pedraza ◽  
José María Cabrera

Designing a new family of advanced high-strength steels (AHSSs) to develop automotive parts that cover early industry needs is the aim of many investigations. One of the candidates in the 3rd family of AHSS are the quenching and partitioning (QP) steels. These steels display an excellent relationship between strength and formability, making them able to fulfill the requirements of safety, while reducing automobile weight to enhance the performance during service. The main attribute of QP steels is the TRIP effect that retained austenite possesses, which allows a significant energy absorption during deformation. The present study is focused on evaluating some process parameters, especially the partitioning temperature, in the microstructures and mechanical properties attained during a QP process. An experimental steel (0.2C-3.5Mn-1.5Si (wt%)) was selected and heated according to the theoretical optimum quenching temperature. For this purpose, heat treatments in a quenching dilatometry and further microstructural and mechanical characterization were carried out by SEM, XRD, EBSD, and hardness and tensile tests, respectively. The samples showed a significant increment in the retained austenite at an increasing partitioning temperature, but with strong penalization on the final ductility due to the large amount of fresh martensite obtained as well.


Sign in / Sign up

Export Citation Format

Share Document